61 research outputs found

    Five-Year Weight Loss Experience of Outpatients Receiving Laparoscopic Adjustable Gastric Band Surgery

    Get PDF
    BACKGROUND: This study evaluated the efficacy and safety of laparoscopic adjustable gastric banding (LAGB) in a large cohort of morbidly obese patients followed for up to 5 years. METHODS: Morbidly obese patients, ≥16 years of age, who underwent LAGB surgery at the Surgical Weight Loss Clinic in Ontario, Canada, between May 2005 and January 2011 were eligible for this retrospective chart review. Electronic files were searched to identify all patients who met the inclusion/exclusion criteria. Demographics, weights at baseline and follow-up visits (up to 60 months following surgery), and post-operative complications were documented. As follow-up visits occurred at unevenly spaced intervals within and across patients, modeling methods were used to more accurately assess mean % weight loss (WL) and % excess weight loss (EWL) over time. RESULTS: This study included 2,815 patients (82 % female, mean age 43 years, mean baseline BMI 44.6 kg/m(2)) followed for a mean of 21.8 ± 15.4 months. Complications developed in 238 patients (8.5 %), the most frequent being prolapse/slippage (4.2 %), tubing/access port problems (1.2 %), and explantation (1.2 %). Mean %WL and %EWL progressed continuously over the first 2.5 years post-LAGB, plateauing at 20 and 49 %, respectively, for up to 5 years of follow up. Factors associated with increased weight loss were time since surgery, greater baseline weight (excess weight), older age at time of surgery, and male gender. CONCLUSIONS: Weight loss was maintained for up to 5 years in our population of patients who underwent LAGB for the treatment of morbid obesity

    Tolvaptan in ADPKD Patients With Very Low Kidney Function

    Get PDF
    Introduction: Tolvaptan slowed estimated glomerular filtration rate (eGFR) decline in subjects with autosomal dominant polycystic kidney disease (ADPKD) in TEMPO 3:4 and REPRISE trials. Tolvaptan effects in subjects with eGFR 15 to 24 ml/min per 1.73 m2 were not investigated. This post hoc analysis retrospectively investigated eGFR decline in REPRISE versus an open-label, phase 3b extension trial (open-label extension [OLE] NCT02251275) in subjects who received placebo in REPRISE and tolvaptan in OLE with eGFR 15 to 24 and 25 to 29 ml/min per 1.73 m2, respectively. Methods: One data subset comprised subjects with OLE baseline eGFR 15 to 29 ml/min per 1.73 m2 who had received placebo in REPRISE and began tolvaptan in OLE. The second comprised subjects who had received tolvaptan in REPRISE and were matched to REPRISE placebo-treated subjects for REPRISE baseline characteristics. Annualized eGFR slopes in REPRISE versus OLE were compared within the REPRISE placebo (i.e., placebo vs. tolvaptan treatment) and tolvaptan (i.e., 2 periods of tolvaptan treatment) subsets. Results: Mean annualized eGFR slopes (ml/min per 1.73 m2) during tolvaptan treatment in OLE versus placebo treatment in REPRISE were -3.4 versus -5.2 for subjects with OLE baseline eGFR 15 to 29 (difference, 1.7; P < 0.001), -3.6 versus -5.4 with baseline eGFR 15 to 24 (difference, 1.8; P < 0.001), and -3.3 versus -4.9 with baseline eGFR 25 to 29 (difference, 1.6; P < 0.001). In REPRISE tolvaptan subjects who continued tolvaptan in OLE, treatment effect was maintained (no difference between mean annualized eGFR slopes). Conclusion: Initiating or maintaining tolvaptan therapy significantly delayed eGFR decline in subjects with baseline eGFR 15 to 24 and 25 to 29 ml/min per 1.73 m2

    Pion and kaon structure at the electron-ion collider

    Get PDF
    Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1GeV mass-scale that characterizes atomic nuclei appear; why does it have the observed value; and, enigmatically, why are the composite Nambu-Goldstone (NG) bosons in quantum chromodynamics (QCD) abnormally light in comparison? In this perspective, we provide an analysis of the mass budget of the pion and proton in QCD; discuss the special role of the kaon, which lies near the boundary between dominance of strong and Higgs mass-generation mechanisms; and explain the need for a coherent effort in QCD phenomenology and continuum calculations, in exa-scale computing as provided by lattice QCD, and in experiments to make progress in understanding the origins of hadron masses and the distribution of that mass within them. We compare the unique capabilities foreseen at the electron-ion collider (EIC) with those at the hadron-electron ring accelerator (HERA), the only previous electron-proton collider; and describe five key experimental measurements, enabled by the EIC and aimed at delivering fundamental insights that will generate concrete answers to the questions of how mass and structure arise in the pion and kaon, the Standard Model's NG modes, whose surprisingly low mass is critical to the evolution of our Universe

    Re-Imagining School Feeding : A High-Return Investment in Human Capital and Local Economies

    Get PDF
    Analysis shows that a quality education, combined with a guaranteed package of health and nutrition interventions at school, such as school feeding, can contribute to child and adolescent development and build human capital. School feeding programs can help get children into school and help them stay there, increasing enrollment and reducing absenteeism. Once children are in the classroom, these programs can contribute to their learning by avoiding hunger and enhancing cognitive abilities. The benefits are especially great for the poorest and most disadvantaged children. As highlighted in the World Bank’s 2018 World Development Report (World Bank 2018), countries need to prioritize learning, not just schooling. Children must be healthy, not hungry, if they are to match learning opportunities with the ability to learn. In the most vulnerable communities, nutrition-sensitive school meals can offer children a regular source of nutrients that are essential for their mental and physical development. And for the growing number of countries with a “double burden” of undernutrition and emerging obesity problems, well-designed school meals can help set children on the path toward more healthy diets. In Latin America, for example, where there is a growing burden of noncommunicable diseases (NCDs), school feeding programs are a key intervention in reducing undernutrition and promoting healthy diet choices. Mexico’s experience reducing sugary beverages in school cafeterias, for example, was found to be beneficial in advancing a healthy lifestyle. A large trial of school-based interventions in China also found that nutritional or physical activity interventions alone are not as effective as a joint program that combines nutritional and educational interventions. In poor communities, economic benefits from school feeding programs are also evident—reducing poverty by boosting income for households and communities as a whole. For families, the value of meals in school is equivalent to about 10 percent of a household’s income. For families with several children, that can mean substantial savings. As a result, school feeding programs are often part of social safety nets in poor countries, and they can be a stable way to reliably target pro-poor investments into communities, as well as a system that can be scaled up rapidly to respond to crises. There are also direct economic benefits for smallholder farmers in the community. Buying local food creates stable markets, boosting local agriculture, impacting rural transformation, and strengthening local food systems. In Brazil, for example, 30 percent of all purchases for school feeding come from smallholder agriculture (Drake and others 2016). These farmers are oftentimes parents with schoolchildren, helping them break intergenerational cycles of hunger and poverty. Notably, benefits to households and communities offer important synergies. The economic growth in poor communities helps provide stability and better-quality education and health systems that promote human capital. At the same time, children and adolescents grow up to enjoy better employment and social opportunities as their communities grow

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore