157 research outputs found

    Expression of basic fibroblast growth factor is associated with poor outcome in non-Hodgkin's lymphoma

    Get PDF
    It is now clear that angiogenesis and angiogenesis factors are important in the pathogenesis of haematological malignancies. High pretreatment levels of serum basic fibroblast growth factor have been shown to be associated with poor prognosis in patients with non-Hodgkin's lymphoma. The aim of this study was to evaluate whether non-Hodgkin's lymphoma cells express basic fibroblast growth factor and/or its receptor (fibroblast growth factor receptor-1) and whether basic fibroblast growth factor expression correlates with basic fibroblast growth factor serum levels, intratumoral microvessel density, and patient outcome. We measured basic fibroblast growth factor by enzyme-linked immunosorbent assay in sera taken from 58 patients with non-Hodgkin's lymphoma before treatment and in 19 of them also after treatment. Pathological specimens at diagnosis were evaluated by immunohistochemistry staining using polyoclonal antibody against factor-VIII-related antigen, basic fibroblast growth factor and fibroblast growth factor receptor-1 to determine the expression of the microvessel count and basic fibroblast growth factor and fibroblast growth factor receptor-1. The lymphoma specimens demonstrated positive staining for basic fibroblast growth factor (in 23%) and fibroblast growth factor receptor-1 (in 58.5%). The patients who expressed basic fibroblast growth factor had a significantly worse progression-free and overall survival than those who did not (P=0.003 and P=0.03 respectively), while patients expressing fibroblast growth factor receptor-1 were less likely to achieve complete remission than those lacking the receptor (33% vs 65% , P=0.047). There was no correlation of basic fibroblast growth factor staining with either serum basic fibroblast growth factor levels or microvessel count. Basic fibroblast growth factor serum levels did not change significantly after treatment These results suggest that non-Hodgkin's lymphoma specimens express basic fibroblast growth factor and its receptor (fibroblast growth factor receptor-1) and this expression is associated with poor patient outcome

    Direct Observation of Single Amyloid-β(1-40) Oligomers on Live Cells: Binding and Growth at Physiological Concentrations

    Get PDF
    Understanding how amyloid-β peptide interacts with living cells on a molecular level is critical to development of targeted treatments for Alzheimer's disease. Evidence that oligomeric Aβ interacts with neuronal cell membranes has been provided, but the mechanism by which membrane binding occurs and the exact stoichiometry of the neurotoxic aggregates remain elusive. Physiologically relevant experimentation is hindered by the high Aβ concentrations required for most biochemical analyses, the metastable nature of Aβ aggregates, and the complex variety of Aβ species present under physiological conditions. Here we use single molecule microscopy to overcome these challenges, presenting direct optical evidence that small Aβ(1-40) oligomers bind to living neuroblastoma cells at physiological Aβ concentrations. Single particle fluorescence intensity measurements indicate that cell-bound Aβ species range in size from monomers to hexamers and greater, with the majority of bound oligomers falling in the dimer-to-tetramer range. Furthermore, while low-molecular weight oligomeric species do form in solution, the membrane-bound oligomer size distribution is shifted towards larger aggregates, indicating either that bound Aβ oligomers can rapidly increase in size or that these oligomers cluster at specific sites on the membrane. Calcium indicator studies demonstrate that small oligomer binding at physiological concentrations induces only mild, sporadic calcium leakage. These findings support the hypothesis that small oligomers are the primary Aβ species that interact with neurons at physiological concentrations

    FRAGMATIC: A randomised phase III clinical trial investigating the effect of fragmin® added to standard therapy in patients with lung cancer

    Get PDF
    Background Venous thromboembolism (VTE) occurs when blood clots in the leg, pelvic or other deep vein (deep vein thrombosis) with or without transport of the thrombus into the pulmonary arterial circulation (pulmonary embolus). VTE is common in patients with cancer and is increased by surgery, chemotherapy, radiotherapy and disease progression. Low molecular weight heparin (LMWH) is routinely used to treat VTE and some evidence suggests that LMWH may also have an anticancer effect, by reduction in the incidence of metastases. The FRAGMATIC trial will assess the effect of adding dalteparin (FRAGMIN), a type of LMWH, to standard treatment for patients with lung cancer. Methods/Design The study design is a randomised multicentre phase III trial comparing standard treatment and standard treatment plus daily LMWH for 24 weeks in patients with lung cancer. Patients eligible for this study must have histopathological or cytological diagnosis of primary bronchial carcinoma (small cell or non-small cell) within 6 weeks of randomisation, be 18 or older, and must be willing and able to self-administer 5000 IU dalteparin by daily subcutaneous injection or have it administered to themselves or by a carer for 24 weeks. A total of 2200 patients will be recruited from all over the UK over a 3 year period and followed up for a minimum of 1 year after randomisation. Patients will be randomised to one of the two treatment groups in a 1:1 ratio, standard treatment or standard treatment plus dalteparin. The primary outcome measure of the trial is overall survival. The secondary outcome measures include venous thrombotic event (VTE) free survival, serious adverse events (SAEs), metastasis-free survival, toxicity, quality of life (QoL), levels of breathlessness, anxiety and depression, cost effectiveness and cost utility. Trial registration Current Controlled Trials ISRCTN8081276

    PGF2α-F-prostanoid receptor signalling via ADAMTS1 modulates epithelial cell invasion and endothelial cell function in endometrial cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increase in cancer cell invasion and microvascular density is associated with a poorer prognosis for patients with endometrial cancer. In endometrial adenocarcinoma F-prostanoid (FP) receptor expression is elevated, along with its ligand prostaglandin (PG)F<sub>2α</sub>, where it regulates expression and secretion of a host of growth factors and chemokines involved in tumorigenesis. This study investigates the expression, regulation and role of a disintegrin and metalloproteinase with thrombospondin repeat 1 (ADAMTS1) in endometrial adenocarcinoma cells by PGF<sub>2α </sub>via the FP receptor.</p> <p>Methods</p> <p>Human endometrium and adenocarcinoma tissues were obtained in accordance with Lothian Research Ethics Committee guidance with informed patient consent. Expression of ADAMTS1 mRNA and protein in tissues was determined by quantitative RT-PCR analysis and immunohistochemistry. Signal transduction pathways regulating ADAMTS1 expression in Ishikawa cells stably expressing the FP receptor to levels seen in endometrial cancer (FPS cells) were determined by quantitative RT-PCR analysis. In vitro invasion and proliferation assays were performed with FPS cells and human umbilical vein endothelial cells (HUVECs) using conditioned medium (CM) from PGF<sub>2α</sub>-treated FPS cells from which ADAMTS1 was immunoneutralised and/or recombinant ADAMTS1. The role of endothelial ADAMTS1 in endothelial cell proliferation was confirmed with RNA interference. The data in this study were analysed by T-test or ANOVA.</p> <p>Results</p> <p>ADAMTS1 mRNA and protein expression is elevated in endometrial adenocarcinoma tissues compared with normal proliferative phase endometrium and is localised to the glandular and vascular cells. Using FPS cells, we show that PGF2α-FP signalling upregulates ADAMTS1 expression via a calmodulin-NFAT-dependent pathway and this promotes epithelial cell invasion through ECM and inhibits endothelial cell proliferation. Furthermore, we show that CM from FPS cells regulates endothelial cell ADAMTS1 expression in a rapid biphasic manner. Using RNA interference we show that endothelial cell ADAMTS1 also negatively regulates cellular proliferation.</p> <p>Conclusions</p> <p>These data demonstrate elevated ADAMTS1 expression in endometrial adenocarcinoma. Furthermore we have highlighted a mechanism whereby FP receptor signalling regulates epithelial cell invasion and endothelial cell function via the PGF<sub>2α</sub>-FP receptor mediated induction of ADAMTS1.</p

    Mitochondrial Ca2+ Overload Underlies Aβ Oligomers Neurotoxicity Providing an Unexpected Mechanism of Neuroprotection by NSAIDs

    Get PDF
    Dysregulation of intracellular Ca2+ homeostasis may underlie amyloid β peptide (Aβ) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Aβ1–42 oligomers, the assembly state correlating best with cognitive decline in AD, but not Aβ fibrils, induce a massive entry of Ca2+ in neurons and promote mitochondrial Ca2+ overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Aβ oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca2+ overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca2+ overload, cytochrome c release and cell death induced by Aβ oligomers. Our results indicate that i) mitochondrial Ca2+ overload underlies the neurotoxicity induced by Aβ oligomers and ii) inhibition of mitochondrial Ca2+ overload provides a novel mechanism of neuroprotection by NSAIDs against Aβ oligomers and AD

    GABAA Receptor-Mediated Acceleration of Aging-Associated Memory Decline in APP/PS1 Mice and Its Pharmacological Treatment by Picrotoxin

    Get PDF
    Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presenilin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9–15 months) transgenic APP/PS1 mice and old (19–25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABAA receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABAA receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABAA receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABAA receptor α1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABAA receptor α1 subunit and improvement of cognitive functions by long term GABAA receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABAA receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Aβ and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice

    All-d-Enantiomer of β-Amyloid Peptide Forms Ion Channels in Lipid Bilayers

    Get PDF
    Alzheimer’s disease (AD) is the most common type of senile dementia in aging populations. Amyloid β (Aβ)-mediated dysregulation of ionic homeostasis is the prevailing underlying mechanism leading to synaptic degeneration and neuronal death. Aβ-dependent ionic dysregulation most likely occurs either directly via unregulated ionic transport through the membrane or indirectly via Aβ binding to cell membrane receptors and subsequent opening of existing ion channels or transporters. Receptor binding is expected to involve a high degree of stereospecificity. Here, we investigated whether an Aβ peptide enantiomer, whose entire sequence consists of d-amino acids, can form ion-conducting channels; these channels can directly mediate Aβ effects even in the absence of receptor–peptide interactions. Using complementary approaches of planar lipid bilayer (PLB) electrophysiological recordings and molecular dynamics (MD) simulations, we show that the d-Aβ isomer exhibits ion conductance behavior in the bilayer indistinguishable from that described earlier for the l-Aβ isomer. The d isomer forms channel-like pores with heterogeneous ionic conductance similar to the l-Aβ isomer channels, and the d-isomer channel conductance is blocked by Zn2+, a known blocker of l-Aβ isomer channels. MD simulations further verify formation of β-barrel-like Aβ channels with d- and l-isomers, illustrating that both d- and l-Aβ barrels can conduct cations. The calculated values of the single-channel conductance are approximately in the range of the experimental values. These findings are in agreement with amyloids forming Ca2+ leaking, unregulated channels in AD, and suggest that Aβ toxicity is mediated through a receptor-independent, nonstereoselective mechanism

    The Extracellular Matrix and Blood Vessel Formation: Not Just a Scaffold

    Get PDF
    The extracellular matrix plays a number of important roles, among them providing structural support and information to cellular structures such as blood vessels imbedded within it. As more complex organisms have evolved, the matrix ability to direct signalling towards the vasculature and remodel in response to signalling from the vasculature has assumed progressively greater importance. This review will focus on the molecules of the extracellular matrix, specifically relating to vessel formation and their ability to signal to the surrounding cells to initiate or terminate processes involved in blood vessel formation
    corecore