782 research outputs found

    A new algorithm for high-quality ionogram generation and analysis

    Get PDF
    Standard digital ionograms that are generated by fast Fourier transform or autoregressive modeling suffer from high interference levels due to other users of the HF channel which produce artifacts and distortion, hence complicating automatic processing and information extraction. In this paper, a new method is proposed to obtain high-quality ionograms of the desired layer reflections and automatically extract important information such as critical frequencies. Following the standard procedures, two sets of periodograms are obtained by using rectangular and Blackman windows. These two periodograms are filtered and fused utilizing an automatic edge-detection-based time-frequency detector. The fused ionogram provides sharp description of the layer reflections with very low sidelobe structure (ringing). The performance of this new ionogram algorithm is tested using chirp sounder data collected from an oblique midlatitude path. It is observed that the presented algorithm is highly successful in obtaining robust and sharp ionograms free of artifacts. Furthermore, a new algorithm is proposed for automated computation of dispersion and critical frequencies of the magnetoionic components detected on the ionogram. Since efficient signal-processing algorithms are utilized, the proposed method can be implemented in real time

    Multipath Separation-Direction of Arrival (MS-DOA) with Genetic Search Algorithm for HF channels

    Get PDF
    Cataloged from PDF version of article.Direction-of-Arrival (DOA) defines the estimation of arrival angles of an electromagnetic wave impinging on a set of sensors. For dispersive and time-varying HF channels, where the propagating wave also suffers from the multipath phenomena, estimation of DOA is a very challenging problem. Multipath Separation-Direction of Arrival (MS-DOA), that is developed to estimate both the arrival angles in elevation and azimuth and the incoming signals at the output of the reference antenna with very high accuracy, proves itself as a strong alternative in DOA estimation for HF channels. In MS-DOA, a linear system of equations is formed using the coefficients of the basis vector for the array output vector, the incoming signal vector and the array manifold. The angles of arrival in elevation and azimuth are obtained as the maximizers of the sum of the magnitude squares of the projection of the signal coefficients on the column space of the array manifold. In this study, alternative Genetic Search Algorithms (GA) for the maximizers of the projection sum are investigated using simulated and experimental ionospheric channel data. It is observed that GA combined with MS-DOA is a powerful alternative in online DOA estimation and can be further developed according to the channel characteristics of a specific HF link. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserve

    Adaptive tracking of narrowband HF channel response

    Get PDF
    Estimation of channel impulse response constitutes a first step in computation of scattering function, channel equalization, elimination of multipath, and optimum detection and identification of transmitted signals through the HF channel. Due to spatial and temporal variations, HF channel impulse response has to be estimated adaptively. Based on developed state-space and measurement models, an adaptive Kalman filter is proposed to track the HF channel variation in time. Robust methods of initialization and adaptively adjusting the noise covariance in the system dynamics are proposed. In simulated examples under good, moderate and poor ionospheric conditions, it is observed that the adaptive Kalman filter based channel estimator provides reliable channel estimates and can track the variation of the channel in time with high accuracy

    Computerized ionospheric tomography with the IRI model

    Get PDF
    Computerized ionospheric tomography (CIT) is a method to estimate ionospheric electron density distribution by using the global positioning system (GPS) signals recorded by the GPS receivers. Ionospheric electron density is a function of latitude, longitude, height and time. A general approach in CIT is to represent the ionosphere as a linear combination of basis functions. In this study, the model of the ionosphere is obtained from the IRI in latitude and height only. The goal is to determine the best representing basis function from the set of Squeezed Legendre polynomials, truncated Legendre polynomials, Haar Wavelets and singular value decomposition (SVD). The reconstruction algorithms used in this study can be listed as total least squares (TLS), regularized least squares, algebraic reconstruction technique (ART) and a hybrid algorithm where the reconstruction from the TLS algorithm is used as the initial estimate for the ART. The error performance of the reconstruction algorithms are compared with respect to the electron density generated by the IRI-2001 model. In the investigated scenario, the measurements are obtained from the IRI-2001 as the line integral of the electron density profiles, imitating the total electron content estimated from GPS measurements. It has been observed that the minimum error between the reconstructed and model ionospheres depends on both the reconstruction algorithm and the basis functions where the best results have been obtained for the basis functions from the model itself through SVD. © 2007 COSPAR

    Performance evaluation of track association and maintenance for a MFPAR with doppler velocity measurements

    Get PDF
    This study investigates the effects of incorporating Doppler velocity measurements directly into track association and maintenance parts for single and multiple target tracking unit in a multi function phased array radar (MFPAR). Since Doppler velocity is the major discriminant of clutter from a desired target, the measurement set has been expanded from range, azimuth and elevation angles to include Doppler velocity measurements. We have developed data association and maintenance part of a well known tracking method, Interacting Multiple Model Probabilistic Data Association

    Simulation of a digital communication system

    Get PDF
    In this paper, basic components of a digital communication system are simulated by a computer program. The simulation program is modular and flexible to incorporate any future additions and updates. The simulation program allows the user to choose from various channel models, transmitter and receiver antenna systems, modulation and channel coding techniques. A communication system is defined by various parameters including the source, coding, modulation, antenna systems. In order to facilitate the input of these parameters and follow the flow of the simulation, the Graphical User Interface (GUI) is designed for convenience to the user. The input parameters can both be entered from the GUI or from prepared user files. The major contribution of this simulation system to the existing communication simulators is the addition of flexible antenna systems both at the transmitting and receiving ends. With this simulation program, the antenna arrays can be located anywhere on Earth, on any platform and array elements can be placed on the platform by any desired orientation. The simulation program results are compared with both theoretical computations and commercial simulator results and excellent agreement is observed in both cases

    Incorporating doppler velocity measurement for track initiation and maintenance

    Get PDF
    Performance of multiple target tracking algorithms in complex environments heavily relies on the success of track initiation and measurement-to-track association algorithms. Doppler velocity measurement is the major discriminant of clutter from the target of interest with relatively higher velocities. This work summarizes the analytical derivations and presents simulation results about track initiation and maintenance using Doppler velocity reports along with the 3D position measurements extracted by a phased array radar. © The IEE

    Algorithm for high quality ionograms

    Get PDF
    A new ionogram algorithm, which is highly successful in generating robust and sharp digital ionograms free of artefacts and processing noise, is presented. An important feature of the algorithm is the distortionless zooming capability, which allows the user to concentrate only on the desired magnetoionic components of the ionogram

    Estimation of 3D electron density in the Ionosphere by using fusion of GPS satellite-receiver network measurements and IRI-Plas model

    Get PDF
    GPS systems can give a good approximation of the Slant Total Electron Content in a cylindrical path between the GPS satellite and the receiver. International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model can also give an estimation of the vertical electron density profile in the ionosphere for any given location and time, in the altitude range from about 50 km to 20000 km. This information can be utilized to obtain total electron content between any given receiver and satellite locations based on the IRI-Plas model. This paper explains how the fusion of measurements obtained from a GPS satellite-receiver network can be utilized together with the IRI-Plas model in order to obtain a robust 3D electron density model of the ionosphere. © 2013 ISIF ( Intl Society of Information Fusi

    Algorithms and basis functions in tomographic reconstruction of ionospheric electron density

    Get PDF
    Computerized ionospheric tomography (CIT) is a method to investigate ionosphere electron density in two or three dimensions. This method provides a flexible tool for studying ionosphere. Earth based receivers record signals transmitted from the GPS satellites and the computed pseudorange and phase values are used to calculate Total Electron Content (TEC). Computed TEC data and the tomographic reconstruction algorithms are used together to obtain tomographic images of electron density. In this study, a set of basis functions and reconstruction algorithms are used to investigate best fitting two dimensional tomographic images of ionosphere electron density in height and latitude for one satellite and one receiver pair. Results are compared to IRI-95 ionosphere model and both receiver and model errors are neglected
    corecore