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Adaptive tracking of narrowband HF channel response
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[11 Estimation of channel impulse response constitutes a first step in computation of
scattering function, channel equalization, elimination of multipath, and optimum detection
and identification of transmitted signals through the HF channel. Due to spatial and
temporal variations, HF channel impulse response has to be estimated adaptively. Based
on developed state-space and measurement models, an adaptive Kalman filter is proposed
to track the HF channel variation in time. Robust methods of initialization and adaptively
adjusting the noise covariance in the system dynamics are proposed. In simulated
examples under good, moderate and poor ionospheric conditions, it is observed that the

adaptive Kalman filter based channel estimator provides reliable channel estimates and

can track the variation of the channel in time with high accuracy.
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1. Introduction

[2] Estimation of channel impulse response is an
important ingredient in the design of reliable communi-
cation systems. The estimation process constitutes a first
step in computation of scattering function, channel
equalization, elimination of multipath, and optimum
detection and identification of transmitted signals. The
estimation of channel impulse response is a major
challenge for noisy multipath channels that also vary
both in spatial and temporal domains. The HF commu-
nication channel and underwater acoustic channel are the
two examples where channel estimation has to performed
adaptive to time variations of the channel. In HF band,
due spatial and temporal variations at various scales, the
channel response is usually obtained by controlled
experiments conducted for specific links and frequency
intervals of interest. In these experiments, typically, a
predetermined narrowband input sequence is transmitted
and the variability of the channel investigated based on
the observed channel output sequence. This investigation
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requires the adaptive estimation of the channel response
where the adaptation should be fast enough to capture the
short term variations in the channel response.

[3] Kalman filter can be utilized as an ideal processing
tool for estimation of the HF channel response [Proakis,
1995; Haykin, 1991; Clark, 1989]. However, Conven-
tional Kalman Filters, as mentioned in Clark [1989], are
operated with little or no adaptation to the physical
structure of the channel. Since the performance of the
Kalman Filter is very sensitive to the dynamics of the
channel, careful initialization and proper adjustments of
the operating parameters are required for improved
performance [Haykin, 1991; Arikan and Arikan, 1998;
Miled and Arikan, 2000]. In this paper, a robust method
for the initialization of the Kalman filter is proposed. The
measurement noise covariance matrix is modeled in an
adaptive manner that represents the underlying varying
physical structure of the ionosphere. The performance of
the estimation algorithm is tested with the channel out-
puts obtained from simulated HF links under good,
moderate and poor ionospheric conditions. With the
new state-space model to capture the pulse-to-pulse
variability of the channel impulse response and initiali-
zation, the tracking performance of the Kalman filter
improved significantly compared to that of the Conven-
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tional Kalman Filter even under poor ionospheric con-
ditions. According to Clark [1989], the major problems
in application of conventional Kalman Filters can be
summarized as the cost of implementation, computation-
al complexity, tendency of a steady build-up of round-off
errors compared with other possible estimators. All these
problems can be overcome with new fast and cost-
effective Digital Signal Processors.

[4] In Section 2, formulation of the state space model
and the Kalman Filter will be presented. Also, the
initialization of the Kalman filter parameters which
considerably affects the performance of tracking will
be discussed in detail. In Section 3, results for a com-
puter simulated channel will be presented.

2. Estimation of Baseband Channel
Response

[5s] For the multipath fading channels, which vary with
time, space and frequency, the down converted channel
output 7(¢) corresponding to an arbitrary input signal a(¢)
can be expressed as

r(t) = /OOC a(t — 1)h(t;T)dT (1)

where /(t; ) is the baseband equivalent of the causal but
time varying impulse response of the channel. Specifi-
cally, A(t; T) is the response of the channel to an impulsive
input at time ¢ — T [Proakis, 1995]. Causality of the
channel response implies that: 4 (¢; ) = 0 for T <0.

[6] In order to estimate the baseband channel response,
the data obtained from controlled experiments can be
used. In these controlled experiments, typically the
channel input is chosen as a modulated pulse train:
a(t) = ZN 61 aps(t — pT,), where N,, is the total number
of pulses T, is the pulse perlod a, is the known
information b1t for p™ pulse, and s(7) is the pulse wave-
form. The corresponding channel output in equation (1),
can be expressed as in the following vectoral notation:

(2)

where v(f) is the additive measurement noise, ” is the
transposition operator, and the vectors s,, and h, are
defined as

Ty

Sp.t :M [s(t—pr) s(t—pr —LTp)}T

(3)

and

hl‘:
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In the above equations, 7,/M is the time sampling
interval, which is chosen to be short enough for
negligible aliasing in the obtained samples of a(f) and
h(t; 7). LT, is the maximum duration of 4(#; 7) in delay
domain. The length of A(#; T) in delay domain depends
on the structure of the ionosphere. For poor conditions,
LT, is longer than those values for moderate and good
conditions. In Section 3, these lengths will be compared
for a simulated channel.

[7] In the experiments conducted over the ionospheric
channel, the output signal is recorded and digitized in the
form of samples of as shown below:

) =r(ny?) = Z o (nB).

This relation between the discrete channel inputs and
outputs can be conveniently represented as in the
following state space model:

= Ah, +u, (6)

n+1

r(n) = Clh, +v(n) (7)
In the above model, equation (6) is called as the process
equation. The matrix A is defined as the state of the

system at times n + 1 and n. The vector u, = u(nﬁp)

represents the process noise which can also be defined as
the time variation on h,. Equation (7) is known as the
measurement equation and C,,, where C,, Z 7o ApSp.as
is called as the measurement matrix. v(z) in equat10n 7
is called as the measurement noise which is usually
modelled as a zero mean, white noise process.

[8] In the above state-space model, h, can vary within
a pulse interval. However, in HF applications the time
variation of the channel response can be safely modeled
to vary on a pulse-to-pulse basis [Arikan and Erol,
1998]. Under this assumption, we can obtain the follow-
ing simplified model where variations in h is modelled to
take place from pulse-to-pulse, where the impulse re-
sponse of the ionosphere is allowed to vary according to
u,, a predefined time variation on h,, as

hy.1 =h, +u,

(8)

r, = lehp +v, 9)
where the subscript p denotes the p™ pulse. The matrix A
in equation (6) is chosen as an LM x LM identity matrix.

[o] Based on this state-space model, the mean squared
optimal estimation of the channel response h,,;; can be
carried out efficiently by using the well known Kalman
Filter algorithm [Haykin, 1991]. However, the overall
performance of the Kalman filter heavily depends on the
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choice of the initial conditions and the correlation of u,,
Ru(p).

[10] Initialization of Kalman Filter consists of one of
the most important steps in convergence and stability
of the algorithm. In the applications given in Clark
[1989], the Kalman Filter was introduced to estimate
the various parameters of the ionospheric channel. The
Kalman Filter in Clark [1989] was initialized by a zero
vector assuming that the estimator has no prior know-
ledge of the channel. However, in our application, we
introduced a delay in the computational procedure, and
initialized the Kalman Filter by making use of channel
dynamics. We employed the Regularized Least Squares
estimator in determining the initial channel impulse
response by making use of the first few channel outputs as

ho = (CHCo +pl) ™' Cllrp. (10)
In the above equation, the subscript 0 denotes the first
LM number of samples of the received signal; and the
superscript H indicates the Hermitian. With this
initialization procedure, the Kalman Filter can operate
with an initial estimate which minimizes the error
between the actual channel and the estimated impulse
response, provided that the channel is slowly varying at
least for couple of pulses used in the initialization. This
assumption seems to be valid for midlatitude links
whose wide sense stationarity period is found to be in
the order of 20 s [Arikan and Erol, 1998]. This delay in
estimation causes the first channel estimate to be
available only after first LM samples length of channel
impulse response. In the next section, we will discuss
the specific values of possible LM samples for a
simulated channel. The Least Squares estimation is a
well known technique [Haykin, 1991]. Yet, the problem
of noise amplification for the cases when Cg in
equation (9) has a large condition number, is a major
drawback. In order to avoid this difficulty, we have
introduced a regularization parameter, p, and employed
Tickhonov regularization algorithm [Colfon and Kress,
1992; Donoho, 1994]. The regularization parameter
can be chosen as a preset value or it can be determined
by examining the channel dynamics for the initial
condition estimation. A more robust way of choosing
the regularization parameter p is by examining the
singular values of the matrix CHC, for various
ionospheric conditions. The singular values will be
obtained in descending order and the optimum point for
p can be chosen according to the break point of the
singular values where there is a major variation from
the significant to insignificant singular values. An
example of this procedure of choosing p will be
provided in the next section for a simulated ionospheric
channel. In our application, equation (10) is only used
to initialize the Kalman Filter and the Kalman Filter

16 - 3

further refines the estimates of the impulse response as
new samples become available.

[11] The second parameter which plays a critical role
in the overall performance of the Kalman channel
estimator is Ry(p), the correlation function of the noise
in system dynamics. Again, in previous applications of
Kalman estimator for the ionospheric channel such as in
Clark [1989], Ry( p) is either chosen as a constant matrix
or the adaptation is not based on the channel dynamics.
Unlike previous approaches, in the presented algorithm,
the innovation in the channel impulse response is mod-
elled such that there is a larger variability around the
peaks of the channel impulse response. Thus, we propose
the following time-varying form for the Ry( p):

rky O 0 7
, 0 k -~ 0
u 1)
Ru(p) = — v
LO 0 - ki
where

= (1= D20y )+ s D) /4,
(12)

and i = 1, ..., LM. This form of Ry(p) not only varies
from pulse-to-pulse but also adjusts itself to the
variations in the delay domain, reflecting the actual time
variation of HF modes, where the channel response
shows greater variation in the vicinity of the peaks that
occur at refraction points. With this model, we tried to
capture the actual dynamics of the HF channels.

[12] As will be demonstrated in the following section,
this adaptation of Kalman Filter parameters to the
physical variations in the channel significantly improves
the performance.

3. Results for a Simulated HF Channel

[13] The channel output, r(f), can be obtained either
from controlled experiments for a specific HF link or by
proper simulation of HF channel response. Even for
the cases where experimental data are available, simu-
lations are generally preferred to test the performance of
the proposed algorithms due to the fact that the original
channel response is exactly known. Both ordinary and
extreme ionospheric conditions can be realized with a
proper simulation model. For the time varying HF
channel impulse response, various alternative models
are available including Watterson et al. [1970], Interna-
tional Telecommunication Union (ITU) [1998], and
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Table 1. Parameters for Good, Moderate, and Poor Conditions
for Simulated HF Channel

Good Moderate Poor
Parameter ~ Tap 1 Tap 2 Tap 1 Tap 2 Tap 1 Tap 2
T (msec) 0 0.5 0 1 0 2
0, 0.05 0.05 0.25 0.25 0.5 0.5
op 0.05 0.05 0.25 0.25 0.5 0.5
A, 1 1 1 1 1 1
Ay 1 1 1 1 1 1
fa (Hz) 0 0 0 0 0 0
f» (Hz) 0 0 0 0 0 0
o, (msec) 0.25 0.25 0.5 0.5 1 1

Bertel et al. [1996]. Any of these models can be used in
the simulation program. In this study, the simulation
model is based on the model proposed in Watterson et al.
[1970] since representing the channel response only in
time is sufficient for us to test the performance of the
Kalman Filter. In the Watterson channel model, a Finite
Impulse Response (FIR) filter is used to generate tap
coefficients in delay for each sampling interval in time.
The parameter set for simulation is obtained from /nter-
national Telecommunication Union Radiocommunicaton
(ITU-R) [1992]. The summary of the parameters of the
Watterson model for ‘good,” “‘moderate’ and ‘poor’ iono-
spheric conditions are provided in Table 1. In Table 1,
the parameter T in msec represents the delay between
two taps of the FIR filter corresponding to reflections
from two different ionospheric layers for good, moderate
and poor conditions. For each time sample and at each
tap, the delayed signal is modulated in amplitude and in
phase by an appropriate complex random tap gain
function. The delayed and modulated signals are
summed with additive noise to form the received signal.
Each tap gain function is a sum of two magnetoionic
components denoted by subscripts a and b as denoted in
Table 1. Each magnetoionic component is obtained by
multiplying a sample function of an independent com-
plex Gaussian ergodic random process with zero mean
by an exponential factor to provide the desired Doppler
(frequency) shifts of the tap gain spectrum. In Table 1,
these frequency shifts are denoted by f;, and f, for the two
magnetoionic components, respectively. In Table 1, the
parameters 4, and A, represent the component attenua-
tion of the spectrum of the tap gain function. The
frequency spread on each component is determined by
20, and 20,, for the two magnetoionoic components,
respectively, as given in Table 1 for the good, moderated
and poor ionospheric conditions. In this FIR filter model,
the ionospheric reflections are assumed to take place at a
specific height, so channel impulse response is repre-
sented as impulses in the delay domain. Yet, we believe

ARIKAN AND ARIKAN: TRACKING OF HF CHANNEL RESPONSE

including the thickness of reflecting layers is a better
physical model. Thus, the model for the impulse re-
sponse in Watterson et al. [1970] is modified by adding a
spread function to represent the effect of thickness of the
ionospheric layers. In the modified Watterson model, we
have multiplied the tap coefficients with a spread func-
tion and superposed the spread functions with appropri-
ate time delays at the filter output. The amount of delay
spread (o, in Table 1) is determined from published
measurements on HF channel such as Lundborg et al.
[1996]. For a fixed observation time ¢y, typical forward
the channel impulse response for good, moderate and
poor conditions, |A(t; T)|, is provided in Figure 1. In our
simulations, the maximum duration of |A(z; )| in delay
domain extends as L = 2 pulses for the good condition;
L =4 pulses for the moderate condition; and L = 6 pulses
for the poor condition of the ionosphere.

[14] The Kalman Filter algorithm discussed in the
previous section is used to estimate the forward HF
channel model. The percent error of the estimator for
p™ pulse is determined by

h,, —h

13
Iy | -
where h,,, is the output of modified Watterson channel
forward model, h,, is the Kalman Filter estimate, and || . ||
denotes the £, norm.

[15] For proper operation of the Kalman Filter, the first
step is the determination of initialization conditions and
the regularization parameter, p, that is defined in
equation (10) and used in estimation of h,. As mentioned
in the previous section, a more robust way of choosing
the regularization parameter p is by examining the
singular values of the matrix C§C, for various iono-
spheric conditions and for various Signal-to-Noise Ratios
(SNR) (10 dB to 40 dB). The singular values will be
obtained in descending order and the optimum point for
p can be chosen according to the break point of the
singular values where there is a major variation from the
significant to insignificant singular values. For example,
for the simulated ionospheric channel with parameters
provided in Table 1, the singular values of C§/C, for the
good condition are obtained as [8.996 x 10~° 1.085 x
1078 0.462 x 1073 0.307 x 107° 0 0 0 0]. The break
point of these singular values is 1.085 x 10~° which is
taken as the optimum value for p. Similarly, the value of
p is determined as 0.8 x 10™° for moderate conditions
and 0.14 x 10~® for poor ionospheric conditions.

[16] The second step is the appropriate determination
of o, in equation (11). We checked the number of
iterations that are necessary for convergence of the
Kalman Filter algorithm and the error at convergence
point with the forward model. In Figure 2, the number
of iterations for convergence and the error for various
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SNR are plotted with respect to o, for good, moderate
and poor conditions. o,, is allowed to vary in a range of
1073 to 10! for SNR 10 dB, 20 dB, 30 dB and 40 dB
for good, moderate and poor ionospheric conditions. It
is observed from Figure 2 that for good condition,
number of iterations for convergence and error at
convergence point are lowest compared to moderate
and poor conditions. For high SNR values at good and
moderate conditions, number of iterations for conver-
gence are the smallest. For all conditions, high SNR
values correspond to lowest error at convergence point.
In all cases, although number of iterations for conver-
gence decreases with increasing o,, error at conver-
gence also increases. From Figure 2, it is determined
that 5, = 107> is a reasonable choice for all conditions
and SNRs since Kalman Filter converges faster to the
lowest error.

[17] With the selected parameters, Ry(p) can be chosen
to be constant as in Clark [1989] and Clark and
Hariharan [1990] or to be adaptive as given in equation
(11). It has been observed that when Ry( p) is adjusted to
the varying conditions of the channel, even in poor
ionospheric conditions and low SNRs, the estimator still
converges successfully, tracking the variations in the

channel both in delay and observation time. This effect
is demonstrated by an example presented in Figure 3,
by plotting the percent error defined in equation (13) for a
number of iterations in the case of poor ionospheric
conditions and SNR = 30 dB. In order to compare the
convergence rate for the two approaches, the error bounds
for the two cases are obtained. The middle horizontal
solid line in Figure 3 denotes the mean of 2048 error
samples of the adaptive Kalman Filter. The error for the
adaptive case is bounded within the two standard devia-
tion interval that are indicated by the upper and lower
horizontal solid lines in Figure 3. It is apparent from
Figure 3 that both the mean and the error bounds for the
conventional non-adaptive case are significantly higher
than those for the adaptive case.

[18] The Least Squares (LS) algorithm is widely
preferred as an estimator due to its ease in implemen-
tation and low computational complexity. In order to
compare the advantages and disadvantages with those
of the Kalman Filter estimator, we implemented the LS
channel impulse response estimate as

h=(c’c,) 'cr, (14)
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Figure 2. Number of iterations for convergence and percent error at convergence for good,
moderate and poor conditions for SNR’s 40 dB (solid line), 30 dB (dashed line), 20 dB (dotted

line), and 10 dB (asterisks line).

where the subscript a denotes the number of pulses
that are included in the computation. For comparison
of these two estimators, we have conducted a large set
of simulations. It is observed that the least squares
method converges faster with a lower convergence
error when compared to the Kalman Filter method for
good conditions where the channel does not change
from pulse-to-pulse. For moderate and poor conditions,
the least squares method fails whereas Kalman Filter
still converges with a reasonable error and is capable
of tracking the variations of the channel.

[19] The error plots for convergence for Kalman
Filter at various ionospheric conditions and for various
SNRs are shown in Figure 4. It is observed that with
the suggested choice of parameters and initial condi-
tions, the adaptive Kalman Filter estimator converges
not only for good and moderate conditions and high
SNRs but also for poor conditions of ionosphere and
low SNRs.

[20] The advantage of the Least Square method is
apparent in an off-line estimation of channel response
for a time invariant HF link since the information of
the invariant channel is inherently built in the Least

Squares solution. When the channel is time varying
and/or the estimation needs to be performed in real
time, Kalman Filter is advantageous since the esti-
mates can track the variations in the channel. The
relatively high computational complexity of Kalman
Filters are reduced significantly owing to the rapid
development of fast and cost-effective Digital Signal
Processors.

4. Conclusions

[21] The characterization of narrowband HF channel
response is an important ingredient in the design of HF
communication systems. In this paper, we propose a
Kalman filter based channel estimator that can be
efficiently used to track the variations in the iono-
spheric channel response. The innovative contribution
of the proposed estimation method is in the choice of
physically meaningful ways of initialization and adap-
tation parameters of the Kalman filter. The initial
conditions are determined by using Least Squares
algorithm on channel measurements. The correlation
of the variation on the channel response is modified
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to vary adaptively from pulse to pulse as a function of
past estimates. Based on simulations of HF channels
under various ionospheric states and SNRs, it has been
observed that the suggested method significantly
improves the performance compared to the Conventional
Kalman filter estimator where the ionospheric system
dynamics and robust initialization routines are not incor-
porated. Once the channel impulse response is reliably
estimated, the communication system can perform other
tasks such as the computation of the scattering function
and channel equalization.
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