1,016 research outputs found

    An accurate discretization for an inhomogeneous transport equation with arbitrary coefficients and source

    Get PDF
    A new way of obtaining the algebraic relation between the nodal values in a general one-dimensional transport equation is presented. The equation can contain an arbitrary source and both the convective flux and the diffusion coefficient may vary arbitrarily. Contrary to the usual approach of approximating the derivatives involved, the algebraic relation is based on the exact solution written in integral terms. The required integrals can be speedily evaluated by approximating the integrand with Hermite splines or applying Gauss quadrature rules. The startling point about the whole procedure is that a very high accuracy can be obtained with few nodes, and more surprisingly, it can be increased almost up to machine accuracy by augmenting the number of quadrature points or the Hermite spline degree with little extra cost

    Comparison of the ENATE approach and discontinuous Galerkin spectral element method in 1D nonlinear transport equations

    Get PDF
    In this paper a comparison of the performance of two ways of discretizing the nonlinear convection-diffusion equation in a one-dimensional (1D) domain is performed. The two approaches can be considered within the class of high-order methods. The first one is the discontinuous Galerkin method, which has been profusely used to solve general transport equations, either coupled as the Navier-Stokes equations, or on their own. On the other hand, the ENATE procedure (Enhanced Numerical Approximation of a Transport Equation), uses the exact solution to obtain an exact algebraic equation with integral coefficients that link nodal values with a three-point stencil. This paper is the first of thorough assessments of ENATE by comparing it with well-established high-order methods. Several test cases of the steady Burgers' equation with and without source have been chosen for comparison

    Clinical and biological significance of miR-23b and miR-193a in human hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common cancer of the liver with a very poor prognosis. The dysregulation of microRNAs (miRs) is indeed implicated in HCC onset and progression. In this study, we have evaluated the expression of miR-23b and miR-193a in a large cohort of 59 and 67 HCC patients, respectively. miR-23b and miR-193a resulted significantly down-regulated in primary HCCs compared to their matched peritumoral counterparts. Furthermore, patients with higher miR-193a expression exhibited longer OS and DFS, suggesting that miR-193a may be a molecular prognostic factor for HCC patients. Since the regulation of miRs by DNA methylation may occur in human cancers, we verified whether the down-modulation of miR-23b and miR-193a in HCC tissues could be related to DNA methylation. An inverse trend between miR-23b expression and DNA methylation was observed, indicating that miR-23b can be epigenetically regulated. By contrast, the down-regulation of miR-193a was not mediated by DNA methylation. To verify the potential role of miR-23b and miR-193a as responsive molecular targets in vitro, we used the inhibitor of DNA methylation 5-aza-dC to restore miR-23b expression level in combination with miR-193a transfection. The combined treatment led to a significant inhibition of cellular proliferation and migration. Taken together, our findings provide evidence that miR-23b and miR-193a may be molecular diagnostic and prognostic factors for HCC; furthermore, miR-23b and miR-193a are responsive molecular targets for limiting HCC cell aggressiveness in combination with the epigenetic drug 5-aza-dC. Moreover, our results provide new advances in the epigenetic regulation of these miRs in HCC

    Acute deep vein thrombosis in COVID 19 hospitalized patients. Risk factors and clinical outcomes

    Get PDF
    Nello studio vengono analizzati i fattori di rischio in pazienti con infezione da COVID 19 e trombosi venosa profond

    A European Renal Association (ERA) synopsis for nephrology practice of the 2023 European Society of Hypertension (ESH) Guidelines for the Management of Arterial Hypertension.

    Get PDF
    In June 2023, the European Society of Hypertension (ESH) presented and published the new 2023 ESH Guidelines for the Management of Arterial Hypertension, a document that was endorsed by the European Renal Association (ERA). Following the evolution of evidence in recent years, several novel recommendations relevant to the management of hypertension in patients with chronic kidney disease (CKD) appeared in these Guidelines. These include recommendations for target office blood pressure (BP) <130/80 mmHg in most and against target office BP <120/70 mmHg in all patients with CKD; recommendations for use of spironolactone or chlorthalidone for patients with resistant hypertension with estimated glomerular filtration rate (eGFR) higher or lower than 30 mL/min/1.73 m2, respectively; use of a sodium-glucose cotransporter 2 inhibitor for patients with CKD and estimated eGFR ≥20 mL/min/1.73 m2; use of finerenone for patients with CKD, type 2 diabetes mellitus, albuminuria, eGFR ≥25 mL/min/1.73 m2 and serum potassium <5.0 mmol/L; and revascularization in patients with atherosclerotic renovascular disease and secondary hypertension or high-risk phenotypes if stenosis ≥70% is present. The present report is a synopsis of sections of the ESH Guidelines that are relevant to the daily clinical practice of nephrologists, prepared by experts from ESH and ERA. The sections summarized are those referring to the role of CKD in hypertension staging and cardiovascular risk stratification, the evaluation of hypertension-mediated kidney damage and the overall management of hypertension in patients with CKD

    On the β-detection efficiency of a combined Si and plastic stack detector for DESPEC

    Get PDF
    A Geant4 simulation has been carried out in order to determine the B-detection efficiency of a rare isotope beam implantation setup, for decay spectroscopy experiments, comprising a number of Double Sided Silicon Strip Detectors (DSSSDs) and two plastic scintillation detectors placed upstream and downstream. The absolute efficiency for the emitted B-particle detection from radioactive fragments implanted in the DSSSDs using fast-timing plastic-scintillator detector, is calculated. The detection efficiency of the setup has been studied with two different distances between the Si layers and plastics. The requirement for the thickness of the Si detector layers and its implication on the B-detection effciency has been investigated for 1 mm and 300 um thickness of Si layers. The combined efficiency of DSSSD and plastic detectors were also simulated for two different thicknesses of the DSSSD
    corecore