12 research outputs found

    Fast and Miniaturized Phase Shifter With Excellent Figure of Merit Based on Liquid Crystal and Nanowire-Filled Membrane Technologies

    Get PDF
    This paper presents a highly miniaturized tuneable microstrip line phase shifter for 5 GHz to 67 GHz. The design takes advantage of the microstrip topology by substituting the ground plane by a metallic-nanowire-filled porous alumina membrane (NaM). This leads to a slow-wave (SW) effect of the transmission line; thus, the transmission line can be physically compact while maintaining its electric length. By applying a liquid crystal (LC) with its anisotropic permittivity as substrate between the transmission line and the NaM, a tuneable microstrip line phase shifter is realized. Three demonstrators are identically fabricated filled with different types of high-performance microwave LCs from three generations (GT3-23001, GT5-26001 and GT7-29001). The measurement results show good matching in a 50 Ω system with reflection less than −10 dB over a wide frequency range. These demonstrators are able to reach a maximum figure of merit (FoM) of 41 °/dB, 48 °/dB, and 70 °/dB for different LCs (GT3-23001, GT5-26001 and GT7-29001, respectively). In addition, experiments show that all three LCs should be biased with square wave voltage at approximately 1 kHz to achieve maximum tuneability and response speed. The achieved response times with GT3-23001, GT5-26001 and GT7-29001 are 116 ms, 613 ms, and 125 ms, respectively, which are much faster than other reported LC phase shifter implementations. Large-signal analysis shows that these implementations have high linearity with third-order interception (IP3) points of approximately 60 dBm and a power handling capability of 25 dBm

    Synthesis and design of tunable microwave bandpass filters using planar patch resonators

    No full text
    The objective of this thesis is the design and synthesis of tunable bandpass filters at microwave frequencies using planar patch resonators. A methodology for the design and synthesis of tunable patch filters is developed and applied to two filters with triangular and circular topologies. The methodology provides techniques to extract the coupling scheme that models the filter behavior and the necessary equations for calculating the corresponding coupling matrix. Then, the theoretical filter response resulting from the analysis of the coupling matrix coefficients is compared to the results of complete simulations. The complete simulations combine the results of the 3D electromagnetic (EM) simulation of the filter layout with the results of the electrical simulation of the tuning devices, represented by their lumped elements equivalent model. This allows the correct model of the tuning effect and the definition of the tuning possibilities and limits. In order to validate the methodology, the tunable patch filters are fabricated using Microwave Integrated Circuit (MIC) technology on flexible substrates. The minimum dimensions are greater than 0.5 mm, ensuring a low cost fabrication process.L'objectif de la thèse était la conception et la synthèse de filtres RF passe-bande reconfigurables, basés sur des résonateurs de type “Patch”. Une méthode de conception dédiée à la synthèse des filtres reconfigurables a été développée et appliquée à deux filtres reconfigurables basés sur des « patchs » triangulaire et circulaire. La technique de synthèse repose sur l'analyse de la matrice de couplage, facilitée par une analyse électromagnétique des modes propres des résonateurs « Patch ». Les filtres reconfigurables ont été conçus et optimisés à l'aide de simulations électromagnétiques 3D en incluant le modèle électrique des composants localisés utilisés, diodes varactors et capacités fixes. Les deux filtres reconfigurables ont été réalisés en technologie circuit imprimé. Les dimensions minimum du « layout » ont été choisies afin d'être compatibles avec une technologie bas coût, la dimension la plus faible n'étant pas inférieure à 0,5 mm

    Design of microwave planar bandpass filters using dual-mode patch resonators.

    No full text
    Esta dissertação de mestrado apresenta uma metodologia de projeto de filtros de microondas planares passa-faixa tipo patch dual-mode, que associam baixas perdas nos condutores, boa capacidade de potência, rejeição da banda de segunda harmônica e miniaturização. Utilizou-se a ferramenta computacional MATLAB para desenvolver programas de cálculo de dimensões de ressoadores patch single-mode em função da freqüência fundamental e do substrato escolhido, bem como para cálculo da distribuição de campos eletromagnéticos (EM) ao longo destes ressoadores. O simulador EM 3D Momentum/ADS foi utilizado na análise, otimização e simulação do desempenho dos filtros. A metodologia desenvolvida consiste no projeto do ressoador patch single-mode nas geometrias quadrada, triangular e circular, com perturbações tais que resultem na freqüência central e banda de passagem desejadas para o filtro, bem como na miniaturização do mesmo. A metodologia engloba a análise do posicionamento das linhas de entrada e de saída para excitação dos modos desejados e seu acoplamento ao ressoador projetado. Foram propostos três ressoadores patch com topologias originais, modificados pela inserção de fendas, os quais foram aplicados ao projeto, construção e caracterização de cinco filtros. Desses, dois filtros passa-faixa dual-mode de banda mediana utilizam a nova topologia proposta de ressoador patch quadrado. Esses filtros, com dois e com quatro pólos, operam em 2,4 GHz e 2,35 GHz, com banda de passagem fracional de 14% e 9,8%, respectivamente. Outros dois filtros passa-faixa dual-mode de banda estreita, um com dois pólos e outro com quatro pólos, utilizam a topologia original proposta de ressoador patch triangular, com fenda em forma de \"T\" invertido. O filtro com dois pólos opera em 7,8 GHz, com banda de passagem fracional de 4,3% e o filtro de quatro pólos, em 7,5 GHz, com banda de 3,5%. Por fim, o filtro passa-faixa circular banda larga utiliza o ressoador patch circular proposto, que foi modificado para operar como triple-mode, comportamento inédito na literatura internacional enfocando ressoadores patch. Esse filtro triple-mode com três pólos apresenta freqüência central de 2,4 GHz e banda fracional de 29%. Os resultados experimentais validam a aplicação da metodologia, que apresenta grande flexibilidade no projeto de filtros com bandas estreitas, medianas ou largas, com boa rejeição na faixa de segunda harmônica (resultados acima de 13 dB). Conseguem-se leiautes miniaturizados com redução em área maior que 50% e ao mesmo tempo sem dimensões críticas, o que resulta em facilidade de fabricação através de métodos tradicionais de fotogravação em placas de circuito impresso.This dissertation presents a methodology for the design of microwave planar bandpass filters using dual-mode patch resonators, which have low conductor loss, high power handling, second harmonic band rejection and miniaturization. MatLab software was used to develop routines that can calculate the dimensions of the single-mode patch resonators as a function of their fundamental frequency and of the chosen substrate. Further, these routines are able to calculate the electromagnetic (EM) field patterns across these resonators. Momentum/ADS EM 3D software was used for the analysis, optimization and simulation of the performance of the filters. The developed methodology consists on the design of the single-mode patch resonator in either square, rounded or triangular shape with perturbations that result in the desired filter\'s central frequency and bandwidth, and also in its miniaturization. The methodology involves the positioning of the input and output transmission lines to excite the desired modes and their coupling to the developed resonator. Three patch resonators were proposed with novel topologies that were modified by the insertion of slots, and applied to the design, fabrication, and measurements of five filters. Out of these five filters, two are dualmode medium band filters that use the proposed new topology for the square patch resonator. These filters, with two and four poles, are centered at 2.4 GHz and 2.35 GHz, with fractional bandwidth of 14% and 9.8%, respectively. Other two filters are dual-mode narrowband filters, a two-pole and a four-pole, that use the original topology proposed for the triangular patch resonator with a \"T\"-shaped slot. The two-pole filter is centered at 7.8 GHz with fractional bandwidth of 4.3%, whereas the four-pole filter is centered at 7.5 GHz with 3.5% of bandwidth. The last filter is a broadband circular filter that uses the proposed circular triplemode patch resonator, which is a brand new behavior in the international literature that focus on patch resonators. This triple-mode filter with three poles is centered at 2.4 GHz with fractional bandwidth of 29%. Experimental results validate the methodology, which presents wide filter design flexibility with narrow, medium or broad bands, and good second harmonic rejection (results better than 13 dB). Layouts can be designed with more than 50% of area reduction, and without critical dimensions at the same time, resulting in a simple fabrication that utilizes conventional PCB photopatterning process

    A Microwave-Based Microfluidic Cell Detecting Biosensor for Biological Quantification Using the Metallic Nanowire-Filled Membrane Technology

    No full text
    A label-free, sensitive, miniaturized sensing device was developed for detecting living cells in their flow stream. The outstanding performance of this biosensor in distinguishing living cells in cell suspension was achieved by integrating microstrip stub resonator above a microfluidic structure using the metallic nanowire-filled membrane technology. The cell suspension flows in a microfluidic channel placed between the tip of the stub resonator and its ground plane as the substrate to take advantage of the uniform and concentrated field distribution. We studied the changes in relative permittivity due to the presence of a single living cell in the phase of the transmitted signal (S21). An average variation of as much as 22.85 ± 1.65° at ~11.1 GHz is observed for the living cell sensing using this optimized device. This biosensor could detect rapid flowing cells in their biological medium in real-time and hence, can be used as an early diagnosis and monitoring tool for diseases

    Analysis of a Reconfigurable Bandpass Circular Patch Filter

    No full text
    This paper presents an analysis of a reconfigurable patch filter based on a triple-mode circular patch resonator with four radial slots. The analysis has been carried out thanks to the development of a new theoretical approach of the tunable patch filter based on the coupling matrix. The coefficients of the coupling matrix related to the tunable behavior have been identified and some rules for their evolution have been derived. For a proof-of-concept, a bandpass filter has been designed with a continuous tunability obtained with varactors connected across the slots. State-of-the-art results have been obtained, with a frequency tuning range of 27% from 1.95 to 2.43 GHz and a change in fractional bandwidth from 8.5% to 31.5% for the respective frequencies. In the entire tuning range, the return loss is better than 10 dB and the maximum insertion loss is 2 dB. Due to the newly developed coupling matrix, measurements, simulations, and theory showed great agreement

    Synthesis Methodology Applied to a Tunable Patch Filter With Independent Frequency and Bandwidth Control

    No full text
    A new methodology for the synthesis of tunable patch filters is presented. The methodology helps the designer to perform a theoretical analysis of the filter through a coupling matrix that includes the effect of the tuning elements used to tune the filter. This general methodology accounts for any tuning parameter desired and was applied to the design of a tunable dual-mode patch filter with independent control of center frequency and bandwidth (BW). The bandpass filter uses a single triangular resonator with two etched slots that split the fundamental degenerate modes and form the filter passband. Varactor diodes assembled across the slots are used to vary the frequency of each degenerate fundamental mode independently, which is feasible due to the nature of the coupling scheme of the filter. The varactor diode model used in simulations, their assembling, the dc bias configuration, and measured results are presented. The theory results are compared to the simulations and to measurements showing a very good agreement and validating the proposed methodology. The fabricated filter presents an elliptic response with 20% of center frequency tuning range around 3.2 GHz and a fractional BW variation from 4% to 12% with low insertion loss and high power handling with a 1-dB compression point higher than +14.5 dB

    Slow-Wave Microstrip Line Model for PCB and Metallic-Nanowire-Filled-Membrane Technologies

    No full text
    International audienceAn electrical model composed of lumped elements is proposed for slow-wave microstrip lines that use grounded blind vias/nanowires to achieve the slow-wave effect. The main difference of this model, from the traditional RLGC model for transmission lines, is the modeling of the blind vias/nanowires that consider a mutual inductive coupling considered between sections of the model. Two transmission lines on two technologies are analyzed: printed circuit board (PCB) and metallic nanowire-filled membrane (MnM) substrate. The calculi for each component of the model are detailed. Electrical simulations are done, and a comparison between the measured and simulated data is shown. It is shown that the electrical model can predict the transmission lines’ behavior, especially the dispersion on the results that happen in frequency

    Modeling and Design of a Partially Air-Filled Slow Wave Substrate Integrated Waveguide

    No full text
    International audienceIn this article, a partially air-filled and slow wave substrate integrated waveguide (PAF-SW-SIW) build in the metallic nanowires membrane (MnM) technology is studied, fabricated, and measured. The impact of the nanowire conductivity on the slow wave factor (SWF) is quantified, and expressions of the effective permittivity and the effective loss tangent are found for the considered propagation medium. These parameters are expressed as a function of the air layer thickness and the equivalent conductivity of copper nanowires embedded in the nanoporous membrane. Electromagnetic (EM) simulations are used to validate these expressions, and a good agreement is obtained on both of these parameters for a conductivity between 1 and 1M S/m and for various air layer thicknesses, from 5 to 20 &mu; m. In addition, the attenuation constant of nanowires is studied, and the results show a rapid increase of losses in the side walls of the waveguide for a conductivity lower than 100k S/m. Two sets of PAF-SW-SIW with the cutoff frequencies at 50 and 75 GHz, respectively, were fabricated and measured, resulting in attenuation constants between 0.25 and 0.38 dB/mm and between 0.28 and 0.75 dB/mm in the respective single-mode frequency band of these integrated waveguides.</p

    Suspended CPW Integration on Nanoporous Alumina Interposer for Millimeter Wave Applications

    No full text
    International audienceFor the next generation of mobile communication, 6G and beyond, 3D integration in the millimeter wave range will play an important role. It allows the integration of the best technology, reducing cost and size, while increasing performance. In this paper, we propose the utilization of a suspended CPW transmission line to interconnect a nanoporous alumina interposer to an embedded fused silica chip. The suspended CPW was fabricated and measured up to 110 GHz with low losses (0.2 dB/mm) and near 50-&Omega; characteristic impedance.</p

    Slow-Wave MEMS phase shifter with Liquid Crystal for Reconfigurable 5G

    No full text
    International audienceAntenna beamforming is crucial for the development of 5G technology in the millimeter wave region and typical beamforming configuration uses phased arrays devices. For this reason, the development of phase shifters devices with low-cost, small footprint and high Figure of Merit (FoM) is necessary. In this paper, we present a slow-wave phase shifter based on a nanoporous alumina interposer, MEMS and liquid crystal (LC) for 5G mmW base station beamforming applications. The slow-wave line allows a device miniaturization, while the liquid crystal increases the phase shift and reduces the MEMS actuation voltage. A FoM of 42&deg;/dB and 66 &ordm;/dB was obtained at 24 GHz and 40 GHz, with a maximum biasing voltage of 50 V and a footprint of 0.13 mm 2 . This device is a prime candidate for phased array antenna applications on 5G and future 6G base stations.</p
    corecore