655 research outputs found

    Optical coherence tomography in multiple sclerosis: A 3-year prospective multicenter study

    Get PDF
    Prospective multicenter study; Multiple sclerosis; TomographyEstudi prospectiu multicĂšntric; Esclerosi mĂșltiple; TomografiaEstudio multicĂ©ntrico prospectivo; Esclerosis mĂșltiple; TomografĂ­aObjective To evaluate changes over 3 years in the thickness of inner retinal layers including the peripapillary retinal nerve fiber layer (pRNFL), and combined macular ganglion cell and inner plexiform layers (mGCIPL), in individuals with relapsing-remitting multiple sclerosis (RRMS) versus healthy controls; to determine whether optical coherence tomography (OCT) is sufficiently sensitive and reproducible to detect small degrees of neuroaxonal loss over time that correlate with changes in brain volume and disability progression as measured by the Expanded Disability Status Scale (EDSS). Methods Individuals with RRMS from 28 centers (n = 333) were matched with 64 healthy participants. OCT scans were performed on Heidelberg Spectralis machines (at baseline; 1 month; 6 months; 6-monthly thereafter). Results OCT measurements were highly reproducible between baseline and 1 month (intraclass correlation coefficient >0.98). Significant inner retinal layer thinning was observed in individuals with multiple sclerosis (MS) compared with controls regardless of previous MS-associated optic neuritis––group differences (95% CI) over 3 years: pRNFL: −1.86 (−2.54, −1.17) ”m; mGCIPL: −2.03 (−2.78, −1.28) ”m (both p 5 years (pRNFL: p < 0.05; mGCIPL: p < 0.01). Brain volume decreased by 1.3% in individuals with MS over 3 years compared to 0.5% in control subjects (effect size 0.76). mGCIPL atrophy correlated with brain atrophy (p < 0.0001). There was no correlation of OCT data with disability progression. Interpretation OCT has potential to estimate rates of neurodegeneration in the retina and brain. The effect size for OCT, smaller than for magnetic resonance imaging based on Heidelberg Spectralis data acquired in this study, was increased in early disease.The authors wish to thank Carolyn M. Ervin for her substantial contribution in the data analyses, as well as Mark Kirby, Aisling Towell, and Marie-Catherine Mousseau (Novartis Ireland Ltd.) for their writing support, funded by Novartis Pharma AG, Basel, Switzerland. FB is supported by the NIHR biomedical research center at UCLH

    The UV Properties of the Narrow Line Quasar I Zwicky 1

    Get PDF
    I Zw 1 is the prototype narrow line quasar. We report here the results of our study of the UV emission of I Zw 1 using a high S/N (50-120) spectrum obtained with the HST FOS. The following main new results are obtained: 1. The Mg II and Al III doublets are partially/fully resolved. The measured doublet ratios verify theoretical predictions that the lines are thermalized in the BLR. 2. A weak associated UV absorption system is detected in N~V, and possibly also in C IV and Lya, suggesting an outflow with a velocity of 1870 km/s and velocity dispersion <300 km/s. 3. Lines from ions of increasing ionization level show increasing excess blue wing flux, and an increasing line peak velocity shift, reaching a maximum blueshift of about 2000 km/s for He II 1640. This may indicate an out-flowing component in the BLR, where the ionization level increases with velocity, and which is visible only in the approaching direction. The highest velocity part of this outflow may produce the associated UV absorption system. 4. The small C III] 1909 EW, and the small C III] 1909/Lya and C III] 1909/Si III] 1892 flux ratios indicate a typical BLR density of 10^11, i.e. about an order of magnitude larger than implied by C III] 1909 in most quasars. A BLR component of a higher density is implied by the EW and doublet ratio of the Al III 1857 doublet. 5. Prominent Fe II UV 191 emission is seen, together with weaker line emission at 1294 and 1871 A. These three features have been proposed as evidence for significant Lya pumping of the 8-10 eV levels of Fe II. 6. Significant Fe III emission is present. The Fe III UV 34 and UV 48 multiplets are clearly resolved, and Fe III UV 1, UV 47, UV 50, and UV 68 may also be present. (Shortened version)Comment: 28 pages, 1 table and 7 figures included. Uses aas2pp4.sty. Scheduled for the Astrophysical Journal November 10, 1997 issue, Vol. 48

    Monitoring retinal changes with optical coherence tomography predicts neuronal loss in experimental autoimmune encephalomyelitis.

    Get PDF
    BACKGROUND:Retinal optical coherence tomography (OCT) is a clinical and research tool in multiple sclerosis, where it has shown significant retinal nerve fiber (RNFL) and ganglion cell (RGC) layer thinning, while postmortem studies have reported RGC loss. Although retinal pathology in experimental autoimmune encephalomyelitis (EAE) has been described, comparative OCT studies among EAE models are scarce. Furthermore, the best practices for the implementation of OCT in the EAE lab, especially with afoveate animals like rodents, remain undefined. We aimed to describe the dynamics of retinal injury in different mouse EAE models and outline the optimal experimental conditions, scan protocols, and analysis methods, comparing these to histology to confirm the pathological underpinnings. METHODS:Using spectral-domain OCT, we analyzed the test-retest and the inter-rater reliability of volume, peripapillary, and combined horizontal and vertical line scans. We then monitored the thickness of the retinal layers in different EAE models: in wild-type (WT) C57Bl/6J mice immunized with myelin oligodendrocyte glycoprotein peptide (MOG35-55) or with bovine myelin basic protein (MBP), in TCR2D2 mice immunized with MOG35-55, and in SJL/J mice immunized with myelin proteolipid lipoprotein (PLP139-151). Strain-matched control mice were sham-immunized. RGC density was counted on retinal flatmounts at the end of each experiment. RESULTS:Volume scans centered on the optic disc showed the best reliability. Retinal changes during EAE were localized in the inner retinal layers (IRLs, the combination of the RNFL and the ganglion cell plus the inner plexiform layers). In WT, MOG35-55 EAE, progressive thinning of IRL started rapidly after EAE onset, with 1/3 of total loss occurring during the initial 2 months. IRL thinning was associated with the degree of RGC loss and the severity of EAE. Sham-immunized SJL/J mice showed progressive IRL atrophy, which was accentuated in PLP-immunized mice. MOG35-55-immunized TCR2D2 mice showed severe EAE and retinal thinning. MBP immunization led to very mild disease without significant retinopathy. CONCLUSIONS:Retinal neuroaxonal damage develops quickly during EAE. Changes in retinal thickness mirror neuronal loss and clinical severity. Monitoring of the IRL thickness after immunization against MOG35-55 in C57Bl/6J mice seems the most convenient model to study retinal neurodegeneration in EAE

    An alternative formulation of light-cone string field theory on the plane wave

    Full text link
    We construct a manifestly SO(4) x SO(4) invariant, supersymmetric extension of the closed string cubic interaction vertex and dynamical supercharges in light-cone string field theory on the plane wave space-time. We find that the effective vertex for states built out of bosonic creation oscillators coincides with the one previously constructed in the SO(8) formalism and conjecture that in general the two formulations are physically equivalent. Further evidence for this claim is obtained from the discrete Z_2-symmetry of the plane wave and by computing the mass-shift of the simplest stringy state using perturbation theory. We verify that the leading non-planar correction to the anomalous dimension of the dual gauge theory operators is correctly recovered.Comment: 28 pages; v2: minor change

    Silent progression in disease activity-free relapsing multiple sclerosis.

    Get PDF
    ObjectiveRates of worsening and evolution to secondary progressive multiple sclerosis (MS) may be substantially lower in actively treated patients compared to natural history studies from the pretreatment era. Nonetheless, in our recently reported prospective cohort, more than half of patients with relapsing MS accumulated significant new disability by the 10th year of follow-up. Notably, "no evidence of disease activity" at 2 years did not predict long-term stability. Here, we determined to what extent clinical relapses and radiographic evidence of disease activity contribute to long-term disability accumulation.MethodsDisability progression was defined as an increase in Expanded Disability Status Scale (EDSS) of 1.5, 1.0, or 0.5 (or greater) from baseline EDSS = 0, 1.0-5.0, and 5.5 or higher, respectively, assessed from baseline to year 5 (±1 year) and sustained to year 10 (±1 year). Longitudinal analysis of relative brain volume loss used a linear mixed model with sex, age, disease duration, and HLA-DRB1*15:01 as covariates.ResultsRelapses were associated with a transient increase in disability over 1-year intervals (p = 0.012) but not with confirmed disability progression (p = 0.551). Relative brain volume declined at a greater rate among individuals with disability progression compared to those who remained stable (p &lt; 0.05).InterpretationLong-term worsening is common in relapsing MS patients, is largely independent of relapse activity, and is associated with accelerated brain atrophy. We propose the term silent progression to describe the insidious disability that accrues in many patients who satisfy traditional criteria for relapsing-remitting MS. Ann Neurol 2019;85:653-666

    The OSCAR-IB Consensus Criteria for Retinal OCT Quality Assessment

    Get PDF
    Retinal optical coherence tomography (OCT) is an imaging biomarker for neurodegeneration in multiple sclerosis (MS). In order to become validated as an outcome measure in multicenter studies, reliable quality control (QC) criteria with high inter-rater agreement are required

    Hubble Space Telescope Ultraviolet Spectroscopy of Fourteen Low-Redshift Quasars

    Get PDF
    We present low-resolution ultraviolet spectra of 14 low redshift (z<0.8) quasars observed with HST/STIS as part of a Snap project to understand the relationship between quasar outflows and luminosity. By design, all observations cover the CIV emission line. Nine of the quasars are from the Hamburg-ESO catalog, three are from the Palomar-Green catalog, and one is from the Parkes catalog. The sample contains a few interesting quasars including two broad absorption line (BAL) quasars (HE0143-3535, HE0436-2614), one quasar with a mini-BAL (HE1105-0746), and one quasar with associated narrow absorption (HE0409-5004). These BAL quasars are among the brightest known (though not the most luminous) since they lie at z<0.8. We compare the properties of these BAL quasars to the z1.4 Large Bright Quasar samples. By design, our objects sample luminosities in between these two surveys, and our four absorbed objects are consistent with the v ~ L^0.62 relation derived by Laor & Brandt (2002). Another quasar, HE0441-2826, contains extremely weak emission lines and our spectrum is consistent with a simple power-law continuum. The quasar is radio-loud, but has a steep spectral index and a lobe-dominated morphology, which argues against it being a blazar. The unusual spectrum of this quasar resembles the spectra of the quasars PG1407+265, SDSSJ1136+0242, and PKS1004+13 for which several possible explanations have been entertained.Comment: Uses aastex.cls, 21 pages in preprint mode, including 6 figures and 2 tables; accepted for publication in The Astronomical Journal (projected vol 133

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Phase I interim results of a phase I/II study of the IgG-Fc fusion COVID-19 subunit vaccine, AKS-452

    Get PDF
    To address the coronavirus disease 2019 (COVID-19) pandemic caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recombinant subunit vaccine, AKS-452, is being developed comprising an Fc fusion protein of the SARS-CoV-2 viral spike protein receptor binding domain (SP/RBD) antigen and human IgG1 Fc emulsified in the water-in-oil adjuvant, Montanideℱ ISA 720. A single-center, open-label, phase I dose-finding and safety study was conducted with 60 healthy adults (18–65 years) receiving one or two doses 28 days apart of 22.5 ”g, 45 ”g, or 90 ”g of AKS-452 (i.e., six cohorts, N = 10 subjects per cohort). Primary endpoints were safety and reactogenicity and secondary endpoints were immunogenicity assessments. No AEs ≄ 3, no SAEs attributable to AKS-452, and no SARS-CoV-2 viral infections occurred during the study. Seroconversion rates of anti-SARS-CoV-2 SP/RBD IgG titers in the 22.5, 45, and 90 ”g cohorts at day 28 were 70%, 90%, and 100%, respectively, which all increased to 100% at day 56 (except 89% for the single-dose 22.5 ”g cohort). All IgG titers were Th1-isotype skewed and efficiently bound mutant SP/RBD from several SARS-CoV-2 variants with strong neutralization potencies of live virus infection of cells (including alpha and delta variants). The favorable safety and immunogenicity profiles of this phase I study (ClinicalTrials.gov: NCT04681092) support phase II initiation of this room-temperature stable vaccine that can be rapidly and inexpensively manufactured to serve vaccination at a global scale without the need of a complex distribution or cold chain
    • 

    corecore