104 research outputs found

    The effect of antibiotics on diatom communities

    Get PDF
    Effect of antibiotics (penicillin (P), streptomycin (S) and chloramphenicol (C)) on benthic diatom communities was evaluated using a modified extinction–dilution method. The high antibiotic combinations (2PSC and PSC) reduced diatoms by 99–100% and favoured emergence of yeast, probably due to high concentrations and synergistic effects. Changes in diatom communities in the individual antibiotic treatments were either direct (chloramphenicol and potentially streptomycin) or bacteria-mediated (penicillin). This study suggests that investigations on the fate of antibiotics in antibiotic-polluted and natural environments must consider effects across trophic levels and particularly, diatoms, the base of aquatic food webs

    Role of Reporting in Compliance Monitoring and Enforcement of Ballast Water Management

    Get PDF
    The Decision Support System (DSS) for ballast water management in any given port is dependent on the availability of information on ballast water carried by a ship in advance. Collation of information through Ballast Water Reporting Forms (BWRF) has been adopted by several countries. This paper provides a comparison of the reporting forms adopted by some of the countries and the International Maritime Organization (IMO) recommended BWRF. The manually submitted reporting forms have several limitations and India has developed a self-validating Electronic Ballast Water Reporting Form (e-BWRF) to overcome such issues. In addition, the possible direction for reporting in the future is also presented

    Biofouling Community Structure in a Tropical Estuary of Goa on the West Coast of India

    Get PDF
    Biofouling community structure was studied in a tropical monsoon-influenced Mandovi estuary in Goa, west coast of India. Monthly, seasonal and yearly observations on biofouling on polyvinyl chloride (PVC) panels immersed at subsurface water level were recorded and photographed from May 2012 to September 2013. The barnacle Balanus amphitrite was the dominant fouling organism followed by calcareous polychaetes. The settlement and recruitment of barnacles took place year-round, with the exception of July 2012 and June 2013 (monsoon months). However, their peak abundance was observed during the later months of monsoon (August and September). Polychaetes were dominant during late post-monsoon and pre-monsoon months (December 2012 to April 2013). Silt and slime were observed throughout the observation period. Comparing the fouling pressure of barnacles in the two monsoon seasons (2012 and 2013), fouling was more intense during the monsoon of 2013, indicating an inter-annual variation in the fouling community

    Quantification of the energy required for the destruction of Balanus amphitrite larva by ultrasonic treatment

    Get PDF
    Ultrasonic treatment, a relatively less explored technology in water disinfection, was used to quantify the energy required for the destruction of larvae of barnacle Balanus amphitrite, which is a major marine fouling and a potential invasive organism. Since the power used and treatment time for disinfection are economically, and practically, the most important parameters, the energy required to pulverize the larvae into pieces ≤30 μm was determined as a function of the acoustic power density. The present investigation suggests that an ultrasonic system operating at 20 kHz and 0.0975 W/cm3 can effectively pulverize barnacle larvae having length (~440 μm) and breadth (~350 μm) within 45 seconds using 0.1 mJ/larva of pulverization energy. It was also observed that following pulverization of the larvae, the bacterial abundance increased and the rate of release of bacteria was dependent on power level and treatment time, which in turn decided the pulverization rate and hence the rate of release of bacteria

    Barnacle larval transport in the Mandovi–Zuari estuarine system, central west coast of India

    Get PDF
    A two-dimensional hydrodynamic and particle tracking model was used to estimate the dispersion and retention of barnacle larvae from their possible spawning sites in a tropical monsoon-influenced estuarine system (central west coast of India). Validation of the hydrodynamic simulations yielded a good match with field measurements. The pattern of larval dispersal in the region varied with the winds and currents. The seasonal changes in abundance could be attributed to physical forcing and weather conditions. The extent of barnacle larval dispersal from spawning sites varied from 10 to 78 km for different sites and seasons. During a 24-h cycle, the larval abundance showed one to two peaks in the estuarine area. The increased larval abundance is favored by the flood currents, pushing the larvae into the estuary. Physical forcing in the region helps in transport of the larvae from their spawning sites hugging to the coast and contributing to the population within the estuary. Field observations and numerical experiments suggest the occurrence of higher larval abundance in the estuary during post-monsoon. The dispersal pattern indicated that the barnacle population present in the estuary is well mixed, and with a seasonally changing pattern

    Effect of hydrodynamic cavitation on zooplankton: a tool for disinfection

    Get PDF
    Application of hydrodynamic cavitation for disinfection of water is gaining momentum, as it provides environmentally and economically sound options. In this effort, the effect of cavitating conditions created by differential pump valve opening and that created by flowing through a cavitating element (orifice plates) on the microbes (zooplankton in sea water) is described. The experimental results are compared with modelling of cavitating conditions that includes cavity dynamics, turbulence generated by individual oscillating cavity, cell wall strength and geometrical and operating parameters of cavitation device. Theoretical model for quantifying the cavitationally generated turbulent shear and extent of microbial disinfection has been developed. Experimental results indicated that cavitation and/or turbulent fluid shear dominantly originating from cavitation are effective tools for sea water disinfection as more than 80% of the zooplankton present in the sea water were killed. It was also observed that shock waves generated due to cavitation is not the sole cause for zooplankton disruption. A correct physical mechanism accounting fluid turbulence and shear, generated from stable oscillation of cavity, significantly contribute towards the disruption. Further refinement of the model presented will serve as a basis for higher degree of disinfection and provide a practical tool for sea water disinfection

    Characterization of Bacteria in Ballast Water Using MALDI-TOF Mass Spectrometry

    Get PDF
    To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time

    The Hidden Sexuality of Alexandrium Minutum: An Example of Overlooked Sex in Dinoflagellates

    Get PDF
    Dinoflagellates are haploid eukaryotic microalgae in which rapid proliferation causes dense blooms, with harmful health and economic effects to humans. The proliferation mode is mainly asexual, as the sexual cycle is believed to be rare and restricted to stressful environmental conditions. However, sexuality is key to explaining the recurrence of many dinoflagellate blooms because in many species the fate of the planktonic zygotes (planozygotes) is the formation of resistant cysts in the seabed (encystment). Nevertheless, recent research has shown that individually isolated planozygotes in the lab can enter other routes besides encystment, a behavior of which the relevance has not been explored at the population level. In this study, using imaging flow cytometry, cell sorting, and Fluorescence In Situ Hybridization (FISH), we followed DNA content and nuclear changes in a population of the toxic dinoflagellate Alexandrium minutum that was induced to encystment. Our results first show that planozygotes behave like a population with an “encystment-independent” division cycle, which is light-controlled and follows the same Light:Dark (L:D) pattern as the cycle governing the haploid mitosis. Resting cyst formation was the fate of just a small fraction of the planozygotes formed and was restricted to a period of strongly limited nutrient conditions. The diploid-haploid turnover between L:D cycles was consistent with two-step meiosis. However, the diel and morphological division pattern of the planozygote division also suggests mitosis, which would imply that this species is not haplontic, as previously considered, but biphasic, because individuals could undergo mitotic divisions in both the sexual (diploid) and the asexual (haploid) phases. We also report incomplete genome duplication processes. Our work calls for a reconsideration of the dogma of rare sex in dinoflagellates.Versión del edito

    An inter-site study of biofouling recruitment on static immersion panels in major ports of South East Asia and India

    Get PDF
    Limited knowledge of native marine biodiversity hinders effective biodiversity management to safeguard South and Southeast Asia’s marine coastal environment against the threat of invasive species transfer through shipping. In particular, sessile marine biofouling organisms in South East Asian ports are poorly known. Through the support of the ASEAN-India Cooperation Project on the Extent of Transfer of Alien Invasive Organisms in South/South East Asia Region by Shipping, a coordinated effort to examine diversity of biofouling organisms in major port areas in Southeast Asia and India was made using polyvinylchloride (PVC) panels as recruitment surfaces in a static immersion study for a period of 12 months. Not surprisingly, the study revealed that fouling patterns differed between ports possibly as a result of dissimilar hydrographic conditions. However, there were also underlying similarities that reflected a regional uniformity in the composition of fouling communities. At the same time, the alien Caribbean bivalve Mytilopsis sallei was detected in Manila Bay (Philippines), Songkhla Port (Thailand) and Singapore. This is a first simultaneous biofouling survey involving scientists and government stakeholders from India and ASEAN nations of Brunei Darussalam, Indonesia, Lao PDR, Malaysia, Myanmar, Singapore, Thailand, Philippines and Vietnam

    Association of bacteria with marine invertebrates: implications for ballast water management

    No full text
    Bacteria associated with plankton are of importance in marine bioinvasions and the implementation of ship’s ballast water treatment technologies. In this study, epibiotic and endobiotic bacteria associated with zooplankton, including barnacle nauplii, veliger larvae, and adults of the copepod Oithona sp., were characterized and quantified. Barnacle nauplius and veliger larva harbored ~4.4 × 10<sup>5</sup> cells ind<sup>−1</sup> whereas Oithona sp. had 8.8 × 10<sup>5</sup> cells ind<sup>-1</sup>. Computation of bacterial contribution based on biovolume indicated that despite being the smallest zooplankton tested, veliger larvae harbored the highest number of bacteria, while barnacle nauplii, the largest of the zooplankton, tested in terms of volume contributed the least. Pulverization of zooplankton led to an increase in bacterial numbers; for example, Vibrio cholerae, which was initially 3.5 × 10<sup>3</sup>, increased to 5.4 × 10<sup>5</sup> CFU g<sup>-1</sup>; Escherichia coli increased from 5.0 × 10<sup>2</sup> to 1.3 × 10<sup>4</sup> CFU g<sup>-1</sup>; and Streptococcus faecalis increased from 2.1 × 10<sup>2</sup> to 2.5 × 10<sup>5</sup> CFU g<sup>-1</sup>, respectively. Pulverized zooplankton was aged in the dark to assess the contribution of bacteria from decaying debris. Aging of pulverized zooplankton led to emergence of Chromobacterium violaceum, which is an opportunistic pathogen in animals and humans
    corecore