226 research outputs found

    Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation

    Get PDF
    In this paper we aim to investigate the problems and potentialities of species distribution modeling (SDM) as a tool for conservation planning and policy development and implementation in tropical regions. We reviewed 123 studies published between 1995 and 2007 in five of the leading journals in ecology and conservation, and examined two tropical case studies in which distribution modeling is currently being applied to support conservation planning. We also analyzed the characteristics of data typically used for fitting models within the specific context of modeling tree species distribution in Central America. The results showed that methodological papers outnumbered reports of SDMs being used in an applied context for setting conservation priorities, particularly in the tropics. Most applications of SDMs were in temperate regions and biased towards certain organisms such as mammals and birds. Studies from tropical regions were less likely to be validated than those from temperate regions. Unpublished data from two major tropical case studies showed that those species that are most in need of conservation actions, namely those that are the rarest or most threatened, are those for which SDM is least likely to be useful. We found that only 15% of the tree species of conservation concern in Central America could be reliably modelled using data from a substantial source (Missouri Botanical Garden VAST database). Lack of data limits model validation in tropical areas, further restricting the value of SDMs. We concluded that SDMs have a great potential to support biodiversity conservation in the tropics, by supporting the development of conservation strategies and plans, identifying knowledge gaps, and providing a tool to examine the potential impacts of environmental change. However, for this potential to be fully realized, problems of data quality and availability need to be overcome. Weaknesses in current biological datasets need to be systematically addressed, by increasing collection of field survey data, improving data sharing and increasing structural integration of data sources. This should include use of distributed databases with common standards, referential integrity, and rigorous quality control. Integration of data management with SDMs could significantly add value to existing data resources by improving data quality control and enabling knowledge gaps to be identified

    Height-diameter allometry of tropical forest trees

    Get PDF
    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike\u27s information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account

    Upper and lower airway cultures in children with cystic fibrosis: Do not neglect the upper airways

    Get PDF
    AbstractBackgroundAirways of cystic fibrosis (CF) patients are colonised with bacteria early in life. We aimed to analyse differences between results of simultaneously taken upper airway (UAW) and lower airway (LAW) cultures, to describe clinical characteristics of patients with positive versus negative cultures and to follow up the patients with P. aeruginosa positive UAW cultures.MethodsBacteriological and clinical data from 157 children were collected during annual check up. The number of positive UAW and LAW cultures and correspondence between these results and clinical characteristics were analysed.ResultsPositive LAW and UAW cultures were found in 79.6% and 43.9% of patients respectively (p<0.001). Patients with positive LAW cultures were significantly older (11.9 vs. 9.8years, p<0.05) and had more LAW symptoms (73.6% vs. 46.7%, p<0.05), especially when P. aeruginosa was found. Patients with positive UAW cultures (especially S. aureus) had more nasal discharge (50.7% vs. 25.0%, p<0.001). In 65% of patients with positive UAW and negative LAW culture for P. aeruginosa the next LAW became P. aeruginosa positive.ConclusionUAW cultures and LAW cultures differ in children with CF and there are differences in clinical characteristics between patients with positive versus negative culture results. P. aeruginosa positive UAW cultures appeared to precede positive LAW cultures in a substantial part of patients, suggesting some kind of cross-infection between the UAW and LAW

    Measurements of interrupter resistance: reference values for children 3-13 yrs of age

    Get PDF
    The interrupter technique is a convenient and sensitive technique for studying airway function in subjects who cannot actively participate in (forced) ventilatory function tests. Reference values for preschool children exist but are lacking for children >7 yrs. Reference values were obtained for expiratory interrupter resistance (R(int,e)) in 208 healthy Dutch Caucasian children 3-13 yrs of age. A curvilinear relationship between R(int,e) and height was observed, similar to published airways resistance data measured by plethysmography. No significant differences in cross-sectional trend or level of R(int,e) were observed according to sex. It was found that Z-scores could be used to express individual R(int,e) values and to describe intra- and interindividual differences based on the reference equation: 10logR(int,e)=0.645-0.00668x standing height (cm) kPa x L(-1) x s(-1) and residual SD (0.093 kPa x L(-1) x s(-1)). Expiratory interrupter resistance provides a tool for clinical and epidemiological assessment of airway function in a large age range

    Effect of long-term voluntary exercise wheel running on susceptibility to bacterial pulmonary infections in a mouse model

    Get PDF
    Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa) affects lung bacteriology, sickness severity and phagocyte immune function in mice. Balb/c mice were randomly placed in a cage with or without a running wheel. After 28 days, mice were intranasally infected with P. aeruginosa. Our study showed that regular exercise resulted in a higher sickness severity score and bacterial (P. aeruginosa) loads in the lungs. The phagocytic capacity of monocytes and neutrophils from spleen and lungs was not affected. Although regular moderate exercise has many health benefits, healthy mice showed increased bacterial (P. aeruginosa) load and symptoms, after regular voluntary exercise, with perseverance of the phagocytic capacity of monocytes and neutrophils. Whether patients, suffering from bacterial infectious diseases, should be encouraged to engage in exercise and physical activities with caution requires further research

    Modelling carbon stock and carbon sequestration ecosystem services for policy design: a comprehensive approach using a dynamic vegetation model.

    Get PDF
    Ecosystem service (ES) models can only inform policy design adequately if they incorporate ecological processes. We used the Lund-Potsdam-Jena managed Land (LPJmL) model, to address following questions for Mexico, Bolivia and Brazilian Amazon: (i) How different are C stocks and C sequestration quantifications under standard (when soil and litter C and heterotrophic respiration are not considered) and comprehensive (including all C stock and heterotrophic respiration) approach? and (ii) How does the valuation of C stock and C sequestration differ in national payments for ES and global C funds or markets when comparing both approach? We found that up to 65% of C stocks have not been taken into account by neglecting to include C stored in soil and litter, resulting in gross underpayments (up to 500 times lower). Since emissions from heterotrophic respiration of organic material offset a large proportion of C gained through growth of living matter, we found that markets and decision-makers are inadvertently overestimating up to 100 times C sequestrated. New approaches for modelling C services relevant ecological process-based can help accounting for C in soil, litter and heterotrophic respiration and become important for the operationalization of agreements on climate change mitigation following the COP21 in 2015

    Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation

    Get PDF
    In this paper we aim to investigate the problems and potentialities of species distribution modeling (SDM) as a tool for conservation planning and policy development and implementation in tropical regions. We reviewed 123 studies published between 1995 and 2007 in five of the leading journals in ecology and conservation, and examined two tropical case studies in which distribution modeling is currently being applied to support conservation planning. We also analyzed the characteristics of data typically used for fitting models within the specific context of modeling tree species distribution in Central America. The results showed that methodological papers outnumbered reports of SDMs being used in an applied context for setting conservation priorities, particularly in the tropics. Most applications of SDMs were in temperate regions and biased towards certain organisms such as mammals and birds. Studies from tropical regions were less likely to be validated than those from temperate regions. Unpublished data from two major tropical case studies showed that those species that are most in need of conservation actions, namely those that are the rarest or most threatened, are those for which SDM is least likely to be useful. We found that only 15% of the tree species of conservation concern in Central America could be reliably modelled using data from a substantial source (Missouri Botanical Garden VAST database). Lack of data limits model validation in tropical areas, further restricting the value of SDMs. We concluded that SDMs have a great potential to support biodiversity conservation in the tropics, by supporting the development of conservation strategies and plans, identifying knowledge gaps, and providing a tool to examine the potential impacts of environmental change. However, for this potential to be fully realized, problems of data quality and availability need to be overcome. Weaknesses in current biological datasets need to be systematically addressed, by increasing collection of field survey data, improving data sharing and increasing structural integration of data sources. This should include use of distributed databases with common standards, referential integrity, and rigorous quality control. Integration of data management with SDMs could significantly add value to existing data resources by improving data quality control and enabling knowledge gaps to be identified
    corecore