8 research outputs found

    Calibration and Control of a Redundant Robotic Workcell for Milling Tasks

    Full text link
    This article deals with the tuning of a complex robotic workcell of eight joints devoted to milling tasks. It consists of a KUKA (TM) manipulator mounted on a linear track and synchronised with a rotary table. Prior to any machining, the additional joints require an in situ calibration in an industrial environment. For this purpose, a novel planar calibration method is developed to estimate the external joint configuration parameters by means of a laser displacement sensor and avoiding direct contact with the pattern. Moreover, a redundancy resolution scheme on the joint rate level is integrated within a computer aided manufacturing system for the complete control of the workcell during the path tracking of a milling task. Finally, the whole system is tested in the prototyping of an orographic model.Andres De La Esperanza, FJ.; Gracia Calandin, LI.; Tornero Montserrat, J. (2011). Calibration and Control of a Redundant Robotic Workcell for Milling Tasks. International Journal of Computer Integrated Manufacturing. 24(6):561-573. doi:10.1080/0951192X.2011.566284S56157324

    Endovascular Catheter for Magnetic Navigation under MR Imaging Guidance: Evaluation of Safety In Vivo at 1.5T

    No full text
    BACKGROUND AND PURPOSE: Endovascular navigation under MR imaging guidance can be facilitated by a catheter with steerable microcoils on the tip. Not only do microcoils create visible artifacts allowing catheter tracking, but also they create a small magnetic moment permitting remote-controlled catheter tip deflection. A side product of catheter tip electrical currents, however, is the heat that might damage blood vessels. We sought to determine the upper boundary of electrical currents safely usable at 1.5T in a coil-tipped microcatheter system. MATERIALS AND METHODS: Alumina tubes with solenoid copper coils were attached to neurovascular microcatheters with heat shrink-wrap. Catheters were tested in carotid arteries of 8 pigs. The catheters were advanced under x-ray fluoroscopy and MR imaging. Currents from 0 mA to 700 mA were applied to test heating and potential vascular damage. Postmortem histologic analysis was the primary endpoint. RESULTS: Several heat-mitigation strategies demonstrated negligible vascular damage compared with control arteries. Coil currents ≤300 mA resulted in no damage (0/58 samples) compared with 9 (25%) of 36 samples for > 300-mA activations (P = .0001). Tip coil activation ≤1 minute and a proximal carotid guide catheter saline drip > 2 mL/minute also had a nonsignificantly lower likelihood of vascular damage. For catheter tip coil activations ≤300 mA for ≤1 minute in normal carotid flow, 0 of 43 samples had tissue damage. CONCLUSIONS: Activations of copper coils at the tip of microcatheters at low currents in 1.5T MR scanners can be achieved without significant damage to blood vessel walls in a controlled experimental setting. Further optimization of catheter design and procedure protocols is necessary for safe remote control magnetic catheter guidance

    Neuroblastoma and Related Tumors

    No full text

    Bibliographische Notizen und Mitteilungen

    No full text
    corecore