808 research outputs found

    Superconductivity in spinel oxide LiTi2O4 epitaxial thin films

    Full text link
    LiTi2O4 is a unique material in that it is the only known oxide spinel superconductor. Although bulk studies have demonstrated that superconductivity can be generally described by the Bardeen-Cooper-Schreiffer theory, the microscopic mechanisms of superconductivity are not yet resolved fully. The sensitivity of the superconducting properties to various defects of the spinel crystal structure provides insight into such mechanisms. Epitaxial films of LiTi2O4 on single crystalline substrates of MgAl2O4, MgO, and SrTiO3 provide model systems to systematically explore the effects of lattice strain and microstructural disorder. Lattice strain that affects bandwidth gives rise to limited variations in the superconducting and normal state properties. Microstructural disorder such as antiphase boundaries that give rise to Ti network disorder can reduce the critical temperature, but Ti network disorder combined with Mg interdiffusion can affect the superconducting state much more dramatically. Thickness dependent transport studies indicate a superconductor-insulator transition as a function of film thickness regardless of lattice strain and microstructure. In addition, surface sensitive X-ray absorption spectroscopy has identified Ti to retain site symmetry and average valence of the bulk material regardless of film thickness.Comment: 25 pages, 7 figures, v2 - expanded Fig 1,2,7 with added discussion

    Uncompensated magnetization and exchange-bias field in La0.7_{0.7}Sr0.3_{0.3}MnO3_3/YMnO3_3 bilayers: The influence of the ferromagnetic layer

    Get PDF
    We studied the magnetic behavior of bilayers of multiferroic and nominally antiferromagnetic o-YMnO3_3 (375~nm thick) and ferromagnetic La0.7_{0.7}Sr0.3_{0.3}MnO3_3 and La0.67_{0.67}Ca0.33_{0.33}MnO3_3 (8225 8 \ldots 225~nm), in particular the vertical magnetization shift MEM_E and exchange bias field HEH_E for different thickness and magnetic dilution of the ferromagnetic layer at different temperatures and cooling fields. We have found very large MEM_E shifts equivalent to up to 100\% of the saturation value of the o-YMO layer alone. The overall behavior indicates that the properties of the ferromagnetic layer contribute substantially to the MEM_E shift and that this does not correlate straightforwardly with the measured exchange bias field HEH_E.Comment: 10 figures, 8 page

    Angular dependence of the magnetization reversal in exchange biased Fe/MnF2

    Full text link
    A detailed study of exchange-biased Fe/MnF2 bilayers using magneto-optical Kerr Effect shows that the magnetization reversal occurs almost fully through domain wall nucleation and propagation for external fields parallel to the exchange bias direction. For finite angles phi between bias and external field the magnetization is aligned perpendicular to the field cooling direction for a limited field range for decreasing fields. For external fields perpendicular to the bias direction the magnetization aligns with the field cooling direction for descending and ascending fields before fully reversing. The field range for which the magnetization is close to perpendicular to the external field can be estimated using a simple effective field model.Comment: 14 pages, 3 figures, to appear in AP

    The role of magnetic anisotropy in spin filter junctions

    Full text link
    We have fabricated oxide based spin filter junctions in which we demonstrate that magnetic anisotropy can be used to tune the transport behavior of spin filter junctions. Until recently, spin filters have been largely comprised of polycrystalline materials where the spin filter barrier layer and one of the electrodes are ferromagnetic. These spin filter junctions have relied on the weak magnetic coupling between one ferromagnetic electrode and a barrier layer or the insertion of a nonmagnetic insulating layer in between the spin filter barrier and electrode. We have demonstrated spin filtering behavior in La0.7Sr0.3MnO3/chromite/Fe3O4 junctions without nonmagnetic spacer layers where the interface anisotropy plays a significant role in determining transport behavior. Detailed studies of chemical and magnetic structure at the interfaces indicate that abrupt changes in magnetic anisotropy across the non-isostructural interface is the cause of the significant suppression of junction magnetoresistance in junctions with MnCr2O4 barrier layers.Comment: 7 pages, 7 figure

    Domain-resolved room-temperature magneto-electric coupling in manganite-titanate heterostructures

    Get PDF
    We present a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O3_3 substrate intimately coupled to a ferromagnetic (La,Sr)MnO3_3 film through epitaxial strain and converse piezoelectric effects. Electric field pulse sequences of less than 6 kV/cm were shown to induce large reversible and bistable remanent strains in the manganite film. Magnetic hysteresis loops demonstrate that the changes in strain states result in significant changes in magnetic anisotropy from a highly anisotropic two-fold magnetic symmetry to a more isotropic one. Such changes in magnetic anisotropy are reversible upon multiple cycles and are stable at zero applied electric field, and are accompanied by large changes in resistivity. We directly image the change between the two-fold and isotropic magnetic configurations at the scale of a single ferromagnetic domain using X-ray photoemission electron microscopy as a function of applied electric field pulses. Imaging the domain reversal process as a function of electric field shows that the energy barrier for magnetization reversal is drastically lowered, by up to 70% as determined from free energy calculations, through the anisotropic strain change generated by the ferroelectric substrate. Thus, an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as lowering the coercive field required to reverse magnetization, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.Comment: 6 figures, 1 tabl

    Influence of chemical and magnetic interface properties of Co-Fe-B / MgO / Co-Fe-B tunnel junctions on the annealing temperature dependence of the magnetoresistance

    Get PDF
    The knowledge of chemical and magnetic conditions at the Co40Fe40B20 / MgO interface is important to interpret the strong annealing temperature dependence of tunnel magnetoresistance of Co-Fe-B / MgO / Co-Fe-B magnetic tunnel junctions, which increases with annealing temperature from 20% after annealing at 200C up to a maximum value of 112% after annealing at 350C. While the well defined nearest neighbor ordering indicating crystallinity of the MgO barrier does not change by the annealing, a small amount of interfacial Fe-O at the lower Co-Fe-B / MgO interface is found in the as grown samples, which is completely reduced after annealing at 275C. This is accompanied by a simultaneous increase of the Fe magnetic moment and the tunnel magnetoresistance. However, the TMR of the MgO based junctions increases further for higher annealing temperature which can not be caused by Fe-O reduction. The occurrence of an x-ray absorption near-edge structure above the Fe and Co L-edges after annealing at 350C indicates the recrystallization of the Co-Fe-B electrode. This is prerequisite for coherent tunneling and has been suggested to be responsible for the further increase of the TMR above 275C. Simultaneously, the B concentration in the Co-Fe-B decreases with increasing annealing temperature, at least some of the B diffuses towards or into the MgO barrier and forms a B2O3 oxide

    Titanium Nitride as a Seed Layer for Heusler Compounds

    Full text link
    Titanium nitride (TiN) shows low resistivity at room temperature, high thermal stability and thus has the potential to serve as seed layer in magnetic tunnel junctions. High quality TiN thin films with regard to the crystallographic and electrical properties were grown and characterized by X-ray diffraction and 4-terminal transport measurements. Element specific X-ray absorption spectroscopy revealed pure TiN in the bulk. To investigate the influence of a TiN seed layer on a ferro(i)magnetic bottom electrode, an out-of-plane magnetized Mn2.45Ga as well as in- and out-of-plane magnetized Co2FeAl thin films were deposited on a TiN buffer, respectively. The magnetic properties were investigated using a superconducting quantum interference device (SQUID) and anomalous Hall effect (AHE) for Mn2.45Ga. Magneto optical Kerr effect (MOKE) measurements were carried out to investigate the magnetic properties of Co2FeAl. TiN buffered Mn2.45Ga thin films showed higher coercivity and squareness ratio compared to unbuffered samples. The Heusler compound Co2FeAl showed already good crystallinity when grown at room temperature
    corecore