495 research outputs found
Low-Cost, User-Friendly, Rapid Analysis of Dynamic Data System Established
An issue of primary importance to the development of new jet and certain other airbreathing combined-cycle powered aircraft is the advancement of airframe-integrated propulsion technologies. Namely, engine inlets and their systems and subsystems are required to capture, convert, and deliver the atmospheric airflow demanded by such engines across their operating envelope in a form that can be used to provide efficient, stable thrust. This must be done while also minimizing aircraft drag and weight. Revolutionary inlet designs aided by new technologies are needed to enable new missions. An unwanted byproduct of pursuing these inlet technologies is increased time-variant airflow distortion. Such distortions reduce propulsion system stability, performance, operability, and life. To countermand these limitations and fully evaluate the resulting configurations, best practices dictate that this distortion be experimentally measured at large scale and analyzed. The required measurements consist of those made by an array of high-response pressure transducers located in the flow field at the aerodynamic interface plane (AIP) between the inlet and engine. Although the acquisition of the necessary pitot-pressure time histories is relatively straight-forward, until recent years, the analysis has proved to be very time-consuming, tedious, and expensive. To transform the analysis of these data into a tractable and timely proposition, researchers at the NASA Glenn Research Center created and established the Rapid Analysis of Dynamic Data (RADD) system. The system provides complete, near real-time analysis of time-varying inlet airflow distortion datasets with report quality output. This fully digital approach employs Institute of Electrical and Electronics Engineers (IEEE) binary data file format standardization to establish data-acquisition-system-independent processing on low cost personal computers. Features include invalid instrumentation code-out, logging, and multiple replacement schemes as needed for each channel of instrumentation. The AIP pressure distribution can be interpolated to simulate measurements by alternate AIP probe arrays, if desired. In addition, the RADD system provides for the application of filters that can be used to focus the analysis on the frequency range of interest
Experimental Evaluation of BLI Propulsion: The Boundary Layer Ingesting Inlet/Distortion-Tolerant Fan Solution
NASA has successfully developed a new testbed configuration for experimentally evaluating embedded boundary layer ingesting aircraft propulsors in its 8'x6' Supersonic Wind Tunnel. This testbed meets the challenges of providing the necessary freestream flow Mach conditions and desired range and distribution of boundary layer thickness for embedded aircraft propulsion systems. The testbed consists of a 48ft long raised wind tunnel floor aircraft surface simulator and a boundary layer regulation system to produce propulsion-local aircraft aerodynamic flow fields. This durable special test equipment is designed to be installed in the wind tunnel's transonic test section and is capable of evaluating a wide range of subcritical and supercritical airframe-propulsion integration configurations for subsonic cruise aircraft. The wind tunnel and testbed are well suited for meeting the test requirements of these propulsors in the most cost efficient way and has been aerodynamically calibrated and proven through tests of a first-of-its-kind boundary layer ingesting propulsor
An Experimental Evaluation of the Performance of Two Combination Pitot Pressure Probes
Experimental tests have been completed which recorded the ability of two combination steady state and high response time varying Pitot probe designs to accurately measure steady stagnation pressure at a single location in a flow field. Tests were conducted of double-barreled and coannular Prati probes in a 3.5 in. diameter free jet probe calibration facility from Mach 0.1 to 0.9. Geometric symmetry and pitch (-40 deg to 40 deg) and yaw (0 deg to 40 deg) angle actuation were used to fully evaluate the probes. These tests revealed that the double-barreled configuration induced error in its steady state measurement at zero incidence that increased consistently with jet Mach number to 1.1 percent at Mach 0.9. For all Mach numbers, the double-barreled probe nulled at a pitch angle of approximately 7.0 deg and provided inconsistent measurements when yawed. The double-barreled probe provided adequate measurements via both its steady state and high response tubes (within +/- 0.15 percent accuracy) over unacceptable ranges of biased pitch and inconsistent yaw angles which varied with Mach number. By comparison, the coannular probe provided accurate measurements (at zero incidence) for all jet Mach numbers as well as over a flow angularity range which varied from +/- 26.0 deg at Mach 0.3 deg to +/- 14.0 deg at Mach 0.9. Based on these results, the Prati probe is established as the preferred design. Further experimental tests are recommended to document the frequency response characteristics of the Prati probe
Data Analysis Techniques for Fan Performance in Highly-Distorted Flows from Boundary Layer Ingesting Inlets
The design of a unique distortion-tolerant fan for a high-bypass ratio boundary-layer ingesting propulsion system has been completed and a rig constructed and tested in the NASA Glenn 8x6 wind tunnel. Processing the data from the experiment presented some interesting challenges because of the complexity of the experimental setup and the flow through the test rig. The experiment was run in three phases, each of which employed a unique complement of inlet throat and fan face instrumentation to avoid the blockage that would have resulted from simultaneously installing all of the rakes. The measurement from the individual test points were subsequently combined to compute the overall stage performance. A CFD model of the experiment was used to gain understanding of the flow field and to test some of the techniques proposed for interpolating and extrapolating the measurements into regions where measurements were not made. This capability became extremely useful when it was discovered that there was an unexpected total temperature distortion in the tunnel. The CFD model was modified by inserting a total temperature profile at the upstream boundary that mimicked the measured distortion where measurements were available and that CFD solution was used to investigate methods to infer the complete total temperature field at the fan face
Development of a Flow Field for Testing a Boundary-Layer-Ingesting Propulsor
In order to test embedded-propulsor technology, modifications were required of the 8x6 Supersonic Wind tunnel at NASA Glenn Research Center. The extent of the modifications required that a new tunnel calibration be completed to generate a new calibration dataset and operational procedures for the tunnel, as well as to map the boundary layer on the raised floor. This report describes the propulsor inflow that was to be simulated, documents the tunnel modifications that were required, and conveys the results of the calibration test that was completed to measure the resulting flow properties
Development of a Rotating Rake Array for Boundary-Layer-Ingesting Fan-Stage Measurements
The recent Boundary-Layer-Ingesting Inlet/Distortion Tolerant Fan wind tunnel experiment at NASA Glenn Research Center's 8-foot by 6-foot supersonic wind tunnel examined the performance of a novel inlet and fan stage that was designed to ingest the vehicle boundary layer in order to take advantage of a predicted overall propulsive efficiency benefit. A key piece of the experiment's instrumentation was a pair of rotating rake arrays located upstream and downstream of the fan stage. This paper examines the development of these rake arrays. Pre-test numerical solutions were sampled to determine placement and spacing for rake pressure and temperature probes. The effects of probe spacing and survey density on the repeatability of survey measurements was examined. These data were then used to estimate measurement uncertainty for the adiabatic efficiency
Performance Calculations for a Boundary-Layer-Ingesting Fan Stage from Sparse Measurements
A test of the Boundary Layer Ingesting-Inlet / Distortion-Tolerant Fan was completed in NASA Glenn's 8-Foot by 6-Foot supersonic wind tunnel. Inlet and fan performance were measured by surveys using a set of rotating rake arrays upstream and downstream of the fan stage. Surveys were conducted along the 100 percent speed line and a constant exit corrected flow line passing through the aerodynamic design point. These surveys represented only a small fraction of the data collected during the test. For other operating points, data was recorded as snapshots without rotating the rakes which resulted in a sparser set of recorded data. This paper will discuss analysis of these additional, lower measurement density data points to expand our coverage of the fan map. Several techniques will be used to supplement the snapshot data at test conditions where survey data also exists. The supplemented snapshot data will be compared with survey results to assess the quality of the approach. Effective methods will be used to analyze the data set for which only snapshots exist
Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie
1. Hypoxia occurs seasonally in many stratified coastal marine and freshwater ecosystems when bottom dissolved oxygen (DO) concentrations are depleted below 2–3 mg O2 L-1.
2. We evaluated the effects of hypoxia on fish habitat quality in the central basin of Lake Erie from 1987 to 2005, using bioenergetic growth rate potential (GRP) as a proxy for habitat quality. We compared the effect of hypoxia on habitat quality of (i) rainbow smelt, Osmerus mordax mordax Mitchill (young-of-year, YOY, and adult), a cold-water planktivore, (ii) emerald shiner, Notropis atherinoides Rafinesque (adult), a warm-water planktivore, (iii) yellow perch, Perca flavescens Mitchill (YOY and adult), a cool-water benthopelagic omnivore and (iv) round goby Neogobius melanostomus Pallas (adult) a eurythermal benthivore. Annual thermal and DO profiles were generated from 1D thermal and DO hydrodynamics models developed for Lake Erie’s central basin.
3. Hypoxia occurred annually, typically from mid-July to mid-October, which spatially and temporally overlaps with otherwise high benthic habitat quality. Hypoxia reduced the habitat quality across fish species and life stages, but the magnitude of the reduction varied both among and within species because of the differences in tolerance to low DO levels and warm-water temperatures.
4. Across years, trends in habitat quality mirrored trends in phosphorus concentration and water column oxygen demand in central Lake Erie. The per cent reduction in habitat quality owing to hypoxia was greatest for adult rainbow smelt and round goby (mean: -35%), followed by adult emerald shiner (mean: -12%), YOY rainbow smelt (mean: -10%) and YOY and adult yellow perch (mean: -8.5%).
5. Our results highlight the importance of differential spatiotemporally interactive effects of DO and temperature on relative fish habitat quality and quantity. These effects have the potential to influence the performance of individual fish species as well as population dynamics, trophic interactions and fish community structure
miR-122 Stimulates Hepatitis C Virus RNA Synthesis by Altering the Balance of Viral RNAs Engaged in Replication versus Translation
SummaryThe liver-specific microRNA, miR-122, stabilizes hepatitis C virus (HCV) RNA genomes by recruiting host argonaute 2 (AGO2) to the 5′ end and preventing decay mediated by exonuclease Xrn1. However, HCV replication requires miR-122 in Xrn1-depleted cells, indicating additional functions. We show that miR-122 enhances HCV RNA levels by altering the fraction of HCV genomes available for RNA synthesis. Exogenous miR-122 increases viral RNA and protein levels in Xrn1-depleted cells, with enhanced RNA synthesis occurring before heightened protein synthesis. Inhibiting protein translation with puromycin blocks miR-122-mediated increases in RNA synthesis, but independently enhances RNA synthesis by releasing ribosomes from viral genomes. Additionally, miR-122 reduces the fraction of viral genomes engaged in protein translation. Depleting AGO2 or PCBP2, which binds HCV RNA in competition with miR-122 and promotes translation, eliminates miR-122 stimulation of RNA synthesis. Thus, by displacing PCBP2, miR-122 reduces HCV genomes engaged in translation while increasing the fraction available for RNA synthesis
- …