4,746 research outputs found

    The Evolution of Reaction-diffusion Controllers for Minimally Cognitive Agents

    Get PDF
    No description supplie

    Parametric thermal analysis for the optimization of Double Walled Tubes layout in the Water Cooled Lithium Lead inboard blanket of DEMO fusion reactor

    Get PDF
    Within the roadmap that will lead to the nuclear fusion exploitation for electric energy generation, the construction of a DEMOnstration (DEMO) reactor is, probably, the most important milestone to be reached since it will demonstrate the technological feasibility and economic competitiveness of an industrial-scale nuclear fusion reactor. In order to reach this goal, several European universities and research centres have joined their efforts in the EUROfusion action, funded by HORIZON 2020 UE programme. Within the framework of EUROfusion research activities, ENEA and University of Palermo are involved in the design of the Water-Cooled Lithium Lead Breeding Blanket (WCLL BB), that is one of the two BB concepts under consideration to be adopted in the DEMO reactor. It is mainly characterized by a liquid lithium-lead eutectic alloy acting as breeder (lithium) and neutron multiplier (lead), as well as by subcooled pressurized water as coolant. Two separate circuits, both characterized by a pressure of 15.5 MPa and inlet/outlet temperatures of 295 °C/328 °C, are deputed to cool down the First Wall (FW) and the Breeder Zone (BZ). The former consists in a system of radial-toroidal-radial C-shaped squared channels where countercurrent water flow occurs while the latter relies in the use of bundles of poloidal-radial Double Walled Tubes (DWTs) housed within the breeder. A parametric thermal study has been carried out in order to assess the best DWTs' layout assuring that the structural material maximum temperature does not overcome the allowable limit of 550 °C and that the overall coolant thermal rise fulfils the design target value of 33 °C. The study has been performed following a theoretical-numerical approach based on the Finite Element Method (FEM) and adopting the quoted Abaqus FEM code. Main assumptions and models together with results obtained are herewith reported and critically discussed

    Attenuating post-exertional malaise in Myalgic encephalomyelitis/chronic fatigue syndrome and long-COVID: Is blood lactate monitoring the answer?

    Get PDF
    Highlights • Lactate monitoring has the potential to extend beyond applied sports settings and could be used to monitor the physiologic and pathophysiological responses to external and internal stimuli in chronic disease areas such as Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Post-Covid syndrome or Long Covid. • It is applicable due to the recurrent, episodic and often disabling post-exertional symptom exacerbation (PESE) otherwise referred to as post-exertional malaise (PEM) which is a characteristic symptom of ME/CFS and Long Covid that can last for days and/or weeks. • Lactate monitoring presents an opportunity to support those living with ME/CFS and Long COVID, by allowing patients and practitioners to determine the intensity and anaerobic contribution to everyday tasks which could aid the development of pacing strategies that prevent PEM/PESE

    Using cardiorespiratory fitness assessment to identify pathophysiology in long COVID – Best practice approaches

    Get PDF
    Cardio-respiratory fitness (CRF) is well-established in the clinical domains as an integrative measure of the body's physiological capability and capacity to transport and utilise oxygen during controlled bouts of physical exertion. Long COVID is associated with >200 different symptoms and is estimated to affect ∟150 million people worldwide. The most widely reported impact is reduced quality of life and functional status due to highly sensitive and cyclical symptoms that manifest and are augmented following exposure to physical, emotional, orthostatic, and cognitive stimuli, more commonly known as post-exertional symptom exacerbation (PESE) which prevents millions from engaging in routine daily activities. The use of cardiopulmonary exercise testing (CPET) is commonplace in the assessment of integrated physiology; CPET will undoubtedly play an integral role in furthering the pathophysiology and mechanistic knowledge that will inform bespoke Long COVID treatment and management strategies. An inherent risk of previous attempts to utilise CPET protocols in patients with chronic disease is that these are compounded by PESE and have induced a worsening of symptoms for patients that can last for days or weeks. To do this effectively and to meet the global need, the complex multi-system pathophysiology of Long COVID must be considered to ensure the design and implementation of research that is both safe for participants and capable of advancing mechanistic understanding

    Endothelial dysfunction and lung capillary injury in cardiovascular diseases

    Get PDF
    Cardiac dysfunction of both systolic and diastolic origins leads to increased left atrial pressure, lung capillary injury and increased resistance to gas transfer. Acutely, pressure-induced trauma disrupts the endothelial and alveolar anatomical configuration and definitively causes an impairment of cellular pathways involved in fluid-flux regulation and gas exchange efficiency, a process well identified as stress failure of the alveolar-capillary membrane. In chronic heart failure (HF), additional stimuli other than pressure may trigger the true remodeling process of capillaries and small arteries characterized by endothelial dysfunction, proliferation of myofibroblasts, fibrosis and extracellular matrix deposition. In parallel there is a loss of alveolar gas diffusion properties due to the increased path from air to blood (thickening of extracellular matrix) and loss of fine molecular mechanism involved in fluid reabsorption and clearance. Deleterious changes in gas transfer not only reflect the underlying lung tissue damage but also portend independent prognostic information and may play a role in the pathogenesis of exercise limitation and ventilatory abnormalities observed in these patients. Few currently approved treatments for chronic HF have the potential to positively affect structural remodeling of the lung capillary network; angiotensin-converting enzyme inhibitors are one of the few currently established options. Recently, more attention has been paid to novel therapies specifically targeting the nitric oxide pathway as a suitable target to improve endothelial function and permeability as well as alveolar gas exchange properties

    Synchronization of fractional order chaotic systems

    Full text link
    The chaotic dynamics of fractional order systems begin to attract much attentions in recent years. In this brief report, we study the master-slave synchronization of fractional order chaotic systems. It is shown that fractional order chaotic systems can also be synchronized.Comment: 3 pages, 5 figure

    Systemic approach to the management of infrastructure safety: Organizational items

    Get PDF
    This study deals with the organizational items within a systemic approach finalized to make the safety management of road infrastructures more sustainable at a scale of territory. In fact, the infrastructure safety is a very relevant topic in many states with structural systems built some decades ago. Beyond the inherent structural problems, other items are worthy to be investigated, such as, social, economic and organizational aspects. With this aim, the study describes a systemic approach finalized to make all the public and private stakeholders active actors in the management process by improving the organizational items: interaction and mode of governance. In detail, regarding a case study in an Italian region, the authors propose to take on the satellite-based information to investigate the structural safety problems of the infrastructures at a scale of territory. Along this issue, risk or alert maps are properly defined. Successively, useful suggestions are discussed with the focus to increase the interactions between the different actors for a better management of the safety. The recommendations are able to improve the governance mode and decision process with a more all-inclusive level of organization

    Direct dynamics of 2D cable-driven parallel robots including cables mass effect and its influence in the control performance

    Get PDF
    Cable-driven parallel robots are a type of parallel manipulators where rigid links are replaced by actuated cables. Although in many cases dynamic models that neglect the cables mass and elasticity are employed to simulate the robot behavior and test the control approach to be used, there are several situations in which their effect cannot be disregarded, especially when large span cables are used, and the cable mass density generates important cable sagging. This work proposes a dynamic model for planar cable-driven parallel robots with 3 degrees-of-freedom considering cables mass and elasticity. Furthermore, the effect of using control approaches based on massless inelastic cables dynamic models on robots with non-negligible cable mass and elasticity is finally assessed

    Conceptual design of the enhanced coolant purification systems for the European HCLL and HCPB test blanket modules

    Get PDF
    The Coolant Purification Systems (CPSs) is one of the most relevant ancillary systems of European Helium Cooled Lead Lithium (HCLL) and Helium Cooled Pebble Bed (HCPB) Test Blanket Modules (TBMs) which are currently in the preliminary design phase in view of their installation and operation in ITER. The CPS implements mainly two functions: the extraction and concentration of the tritium permeated from the TBM modules into the primary cooling circuit and the chemistry control of helium primary coolant. During the HCLL and HCPB-TBSs (Test Blanket Systems) Conceptual Design Review (CDR) in 2015 it was recognized the need of reducing the tritium permeation into the Port Cell #16 of ITER. To achieve this and, then, to lower the tritium partial pressure in the Helium Cooling Systems in normal operation, the helium flow-rate treated by each CPS has been increased of almost one order of magnitude. In 2017, to satisfy the CDR outcomes and the new design requirements requested by Fusion for Energy (F4E, the European Domestic Agency for ITER), ENEA performed a preliminary design of the “enhanced” CPSs. This paper presents the current design of the “enhanced” CPSs, focusing on design requirements, assumptions, selection of technologies and preliminary components sizing

    Droplets generated from toilets during urination as a possible vehicle of carbapenem-resistant Klebsiella pneumoniae

    Get PDF
    BACKGROUND: In the health care setting, infection control actions are fundamental for containing the dissemination of multidrug-resistant bacteria (MDR). Carbapenemase-producing Enterobacterales (CPE), especially Klebsiella pneumoniae (CR-KP), can spread among patients, although the dynamics of transmission are not fully known. Since CR-KP is present in wastewater and microorganisms are not completely removed from the toilet bowl by flushing, the risk of transmission in settings where toilets are shared should be addressed. We investigated whether urinating generates droplets that can be a vehicle for bacteria and explored the use of an innovative foam to control and eliminate this phenomenon. METHODS: To study droplet formation during urination, we set up an experiment in which different geometrical configurations of toilets could be reproduced and customized. To demonstrate that droplets can mobilize bacteria from the toilet bowl, a standard ceramic toilet was contaminated with a KPC-producing Klebsiella pneumoniae ST101 isolate. Then, we reproduced urination and attached culture dishes to the bottom of the toilet lid for bacterial colony recovery with and without foam. RESULTS: Rebound droplets invariably formed, irrespective of the geometrical configuration of the toilet. In microbiological experiments, we demonstrated that bacteria are always mobilized from the toilet bowl (mean value: 0.11 ± 0.05 CFU/cm2) and showed that a specific foam layer can completely suppress mobilization. CONCLUSIONS: Our study demonstrated that droplets generated from toilets during urination can be a hidden source of CR-KP transmission in settings where toilets are shared among colonized and noncolonized patients
    • …
    corecore