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Abstract. Cable-driven parallel robots are a type of parallel manipulators where rigid links are 

replaced by actuated cables. Although in many cases dynamic models that neglect the cables mass 

and elasticity are employed to simulate the robot behavior and test the control approach to be used, 

there are several situations in which their effect cannot be disregarded, especially when large span 

cables are used, and the cable mass density generates important cable sagging. This work proposes 

a dynamic model for planar cable-driven parallel robots with 3 degrees-of-freedom considering 

cables mass and elasticity. Furthermore, the effect of using control approaches based on massless 

inelastic cables dynamic models on robots with non-negligible cable mass and elasticity is finally 

assessed. 

Introduction 

Cable driven parallel robots (CDPR) are a special kind of parallel manipulators where rigid links 

are replaced by cables. By controlling the cables length, the position and orientation of the end-

effector (EE) can also be controlled. These robots offer several advantages as the potential to cover 

large working areas and a very good power to weight ratio [1,2]. On the other hand, they also 

present disadvantages, one of them related to the complexity of the robot dynamic model. One 

common dynamic model used to analyze the dynamic behavior of CDPRs considers massless, 

inelastic cables, as in [3]. In this model, cables are considered as straight strings that transmit 

directly the cable tension generated by the winches to the end-effector, significantly reducing the 

complexity of the model. However, in some situations, these models do not represent the dynamic 

behavior of the robot with the required level of accuracy. These scenarios include large robots 

where, due to the cross-section and length of the cables, the cables mass cannot be neglected [4]. 

Static analyses were already performed by means of a geometrically exact model proposed in [5]. 

In this work, a dynamic model that considers cable mass and elasticity is proposed for planar 

CDPRs with 3 degrees-of-freedom (DOF) and n cables. The model proposed in this work is derived 

from a more comprehensive 3D model developed by the same authors of the present work in [6] 

where all the modeling details can be found. The model consists of a set of partial differential 
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equations with boundary conditions modeling the cables behavior coupled with ordinary 

differential equations (ODE) that model the EE. A methodology for obtaining a solution to the 

system is proposed, it is validated through numerical simulations and the influence of the cable 

mass is assessed in two case-study. 

Nonlinear parametric modeling 

     Mechanical formulation 

Let us consider 𝑠𝑖 ∈ [0, 𝐿𝑖(𝑡)] (𝑖 = 1, … , 𝑛) the arclength of the unstretched configuration, 𝐿𝑖(𝑡) 

is the total unstretched length and 𝑙𝑖(𝑡) the linear distance between the boundaries of the i-th cable. 

Vectors 𝒙𝑖 = [𝑦𝑖  𝑧𝑖]
⊤represent the positions of the cable origins in the robot structure w.r.t. the 

fixed reference frame (𝒆𝑦 , 𝒆𝑧) located at 𝒙1 ≡ 𝟎. The vector 𝒓𝑖(𝑡) =  𝑹𝑥(𝜃𝑥(𝑡)) ⋅  𝒓𝑖
0 represents 

the position of the i-th cable attachment point to the end-effector (EE) w.r.t the fixed reference 

frame (𝒆𝑦, 𝒆𝑧) while 𝒓𝑖
0 is the vector describing the EE geometry in the mass-fixed local axes 

(𝒃𝑦(𝑡), 𝒃𝑧(𝑡)) centered in the EE center of mass 𝑂𝑀, while 𝜃𝑥(𝑡) is the rotation angle about the 

axis 𝒆𝑥 ≡ 𝒃𝑥 orthogonal to the working plane, and 𝑹𝑥 is the rotation matrix around the x-axis. The 

position of 𝑂𝑀 can be calculated as 

𝒑𝑀(𝑡) = 𝒑𝑀,𝑖(𝑡) − 𝒓𝑖(𝑡) + 𝒙𝑖(𝑖 = 1, … , 𝑛).          (1) 

The position of the point on the i-th cable is given by the vector 𝒑𝑖(𝑠𝑖, 𝑡) w.r.t.  𝒙𝑖. The strain state 

of the i-th cable can be described by introducing the stretch vector 𝝂𝑖(𝑠𝑖, 𝑡) obtained as 

𝝂𝑖(𝑠𝑖, 𝑡) =
𝑑 

𝑑𝑠𝑖
𝒑𝑖(𝑠𝑖, 𝑡).          (2) 

The vector of the cable axial force can be expressed as: 𝒏𝑖(𝑠𝑖, 𝑡) = 𝑁𝑖(𝑠𝑖, 𝑡)𝝂𝑖(𝑠𝑖, 𝑡)/𝜈𝑖(𝑠𝑖, 𝑡), 

where 𝑁𝑖(𝑠𝑖, 𝑡) = 𝐸𝐴(𝜈𝑖(𝑠𝑖, 𝑡) − 1) represents the cable tension, being 𝐸𝐴 the cable axial 

stiffness.  

Nondimensional form 

The distance 𝑙0,1 = 𝑙1(0) is adopted as characteristic length while the characteristic frequency 

ω𝑐 = √𝐸𝐴/(ρ𝐴 𝑙0,1
2 ) is adopted to nondimensionalize the time. The following nondimensional 

parameters can be introduced 

λ0,𝑖 =
𝑙0,𝑖

𝑙0,1
, 𝑥𝑖̅ =

𝑥𝑖

𝑙0,1
, 𝑟̅𝑖

0 =
𝑟𝑖

0

𝑙0,1
, 𝑟𝑖̅ =

𝑟𝑖

𝑙0,1
 

𝒑̅𝑀 =
𝒑𝑴

𝑙0,1
,  𝒑̅𝑖 =

𝒑𝑖

l0,1
, 𝒏̅𝑖 =

𝒏𝑖

𝜌𝐴  𝜔𝑐
2  𝑙0,1

2 ,  τ = ω𝑐 ⋅ 𝑡          (3) 

λ𝑖(τ) =
𝑙𝑖(τ)

𝑙0,𝑖
,  Λ𝑖(τ) =

𝐿𝑖(τ)

𝑙𝑖(τ)
,  σ =

𝑠𝑖

𝐿𝑖(𝑡)
,  (𝑖 = 1 … 𝑛). 

 

By defining (⋅)′ ≔
𝑑

𝑑σ
(⋅) and (⋅)̇ ≔

𝑑

𝑑τ
(⋅), as the derivatives in terms of the nondimensional 

arclength σ and time τ , respectively, the stretch vector can be then calculated as ν𝑖(σ, τ) =
𝒑𝑖

′̅(σ, τ)/(Λ𝑖(τ)λ𝑖(τ)λ0,𝑖). Due to the definition of ω𝑐, it turns out that the 𝑖-th axial force is given 

in nondimensional form as 𝑁𝑖̅(σ, τ) = (ν𝑖(σ, τ) − 1); therefore, the corresponding vector of the 

nondimensional axial force can be written as 

𝒏𝑖̅(σ, τ) =
1

Λ𝑖(τ)λ𝑖(τ)λ0,𝑖

(ν𝑖(σ, τ) − 1)

ν𝑖(σ, τ)
𝒑𝑖

′̅(σ, τ).          (4) 

 

where ν𝑖 = ||ν𝑖||. Finally, the equation of motion of the 𝑖-th cable in nondimensional form reads 
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𝒏𝑖
′̅(σ, τ)

Λ𝑖(τ)λ𝑖(τ)λ0,𝑖
+ 𝒇𝑖̅(σ, τ) = 𝒑̅𝑖

̈ (σ, τ) + 𝑐𝑖̅ 𝒑̅𝑖
̇ (σ, τ) (𝑖 = 1, … , 𝑛),          (5) 

 

where 𝑐𝑖̅ = 𝑐𝑖/(ρ𝐴1ω𝑐). The nondimensional distributed load, calculated as 𝒇𝑖̅ = 𝒇𝑖/(ρ𝐴1ω𝑐
2𝑙0,1), 

is here considered to be  the only cable self-weight, therefore 𝒇𝑖̅ = −γ 𝒆𝑧, where γ = 𝑔/(ω𝑐
2 𝑙0,1) 

and 𝑔 = 9.81 𝑚/𝑠2 is the gravity acceleration. Furthermore, the kinematic boundary conditions 

associated with Eq. (5) can be written in nondimensional form as  

𝒑𝑖̅(0, τ) = 0    (𝑖 = 1, … , 𝑛),         (6) 

 

𝒙𝑖̅ + 𝒑𝑖̅(1, τ) − 𝒓𝑖̅(τ) = 𝒑̅1(1, τ) − 𝒓̅1(τ)   (𝑖 = 2, … , 𝑛),          (7) 

 

while the nondimensional form of the EE balance equations can be written as  

− ∑ 𝒏𝑖̅(1, 𝜏)

𝑛

𝑖=1

− μ γ 𝒆𝑧 = μ  (𝒑̅1̈(1, τ) − 𝒓̅1̈(τ)),        (8) 

− ∑(𝒓𝑖̅(τ) × 𝒏𝑖̅(1, τ)) 𝒆𝑥

𝑛

𝑖=1

= 𝐽μ̅ 𝜃̈𝑥(τ),            (9) 

 

respectively, where μ = 𝑀/(ρ𝐴1 𝑙0,1) and 𝐽μ̅ = 𝐽𝑀[1/(ρ𝐴1 𝑙0,1
3 )], being M and 𝐽𝑀 the end-effector 

mass and mass moment of inertia, respectively. 

 

     Discretization procedure 

The discretization technique based on the Galerkin method is adopted to reduce the space-

dependence of the cables equations of motion so as to reduce them into a set of ordinary differential 

equations (ODEs), in τ. In this work 𝑚 + 1 trial functions are chosen so as to satisfy the kinematic 

boundary conditions (6) and (7); therefore, the approximate solution of Eq. (5) is given by the 2-

by-1 vector 𝒑𝑖̃(σ, τ) (𝑖 = 1, … , 𝑛) expressed as the linear combination of the 𝑚 + 1 trial functions 

as 

𝒑𝑖̃(σ, τ) = 𝒒𝑖,0(τ) σ + ∑ ϕ𝑖,𝑗(σ)

𝑚

𝑗=1

 𝒒𝑖,𝑗(τ), (10) 

where ϕ𝑖,𝑗(σ) = diag(𝑠𝑖𝑛(𝑗πσ), 𝑠𝑖𝑛(𝑗πσ)) is the 𝑖𝑗-th 2-by-2 diagonal matrix collecting the  𝑗-th 

trial functions and  𝑞𝑖,0 and 𝑞𝑖,𝑗 are the vectors collecting the unknown generalized coordinates. 

Since 𝑝𝑖̃(0, τ) = 0,  Eq. (10) satisfies (6), whereas, to satisfy Eq. (7), the following relationship 

must hold: 

𝒒𝑖,0(τ) = 𝒒1,0(τ) − 𝒓1̅̅ ̅ + 𝒓𝑖̅ − 𝒙𝑖̅,  (𝑖 = 2, … , 𝑛), (11) 

since 𝒑𝑖̃(1, τ) = 𝒒𝑖,0. Therefore, only one out of 𝑛 vectors 𝒒𝑖,0(τ) is an effective set of unknown 

coordinates. By now substituting (10) into (5) one obtains the following unbalanced residual of 

the equations of motion 

𝜼𝑖̃(σ, τ) =
1

Λ𝑖
2λ𝑖

2λ0,𝑖
2 [

(ν𝑖̃ − 1)

ν𝑖̃
𝒑𝑖

′̃]

′

+ 𝒇𝑖̅ − 𝒑̃𝑖
̈ − 𝑐𝑖̅ 𝒑̃𝑖

̇     (𝑖 = 1, … , 𝑛), (12) 

where ν𝑖̃ corresponds to ν𝑖̅ in terms of the approximate solution. The unbalanced residuals can be 

minimized by ensuring that they are orthogonal in the nondimensional domain [0,1] to the trial 

functions adopted in the discretization. Finally, the approximate form of the vector-valued balance 

equations of the end effector can be obtained by substituting Eqns. (10) and (11) into Eqns. (8) and 
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(9). The resulting set of ODEs is solved taking a direct approach, i.e., the force applied to the 

cables is considered the input while the EE trajectory/orientation and the cable shapes are the 

outputs. In this sense, the values of Λ𝑖(𝑡) are assigned by means of Λ𝑖(τ) = 1 − ||𝒏𝑖̂||. To perform 

the time-integration of the ODEs, the system of algebraic equations resulting from the evaluation 

of the governing equations of motion at τ = 0 and considering zero initial acceleration and velocity 

is solved to obtain the initial values 𝒒𝑖,𝑗(0). The initial values of Λ𝑖(0) are computed so that the 

fulfill the equilibrium of the EE. 

 

Simulation results and influence of the cable mass 

To assess the impact of the cable mass in the behavior of a CDPR under real operational conditions, 

the following procedure is employed. First, a position control approach in the Cartesian space is 

designed using a very simple dynamic model for the robot, that assumes massless, inelastic cables, 

for simulating its behavior. Then, employing the same controller, the behavior of the robot is 

simulated using the dynamic model exposed and solved by the procedure described in the previous 

Sections. The control architecture is shown in Fig. 1, where (𝒑𝑀, 𝜃𝑥)∗ and (𝒑𝑀, 𝜃𝑥) stand for the 

desired and the simulated EE trajectory, respectively. The redundancy of the actuation, i.e., the 

conversion between the desired EE acceleration (𝒑̈𝑀, 𝜃̈𝑥) generated by the controller to the 

corresponding cable forces applied to the robot (𝑇), is solved by means of the well-known 

Improved Closed Form proposed by Pott [7]. 

 

 
Figure 1. Block diagram of the control architecture 

 

The PID gains are set by trial-and-error so that the position error committed with the massless 

cable model is less than 10mm. The set of ODEs is solved in Simulink using the classical Runge-

Kutta (ODE4) method, with a sampling time of 1ms. The cable characteristics are 𝐸𝐴 =
150360 (N) and ρ𝐴 = 4.19 ⋅ 10−2 (kg/m) that correspond to those employed in [8]. An over-

constrained CDPR with 4 cables and 3 DOF is considered. For the first case of study the robot 

frame is a rectangle of sizes 40 × 10 (m) and the EE geometry corresponds to a square of 

0.5 × 0.5 (m). In case of study 2, the robot frame and EE are scaled by 1/4. The EE mass is 𝑀 =
20 kg and its inertia 𝐽 = 0.833 (kg⋅m2). The cable tension limits used for solving the redundancy 

by the Improved Closed Form are [500,4000] (N). The employed trajectory is a circumference 

and the time evolution of 𝒑𝑀
∗  is generated by the interpolation algorithm detailed in [9]. For case 

of study 1 the radius is 𝑟 = 2.5 (m) which is scaled proportionally for case of study 2. The 

maximum values for the EE linear speed, acceleration and jerk are, respectively 𝑣 = 12 (m/s), 

𝑎 = 27 (m/s2) and 𝑗 = 122 (m/s3), while for the second case these values are 𝑣 = 3 (m/s), 𝑎 =
6.9 (m/s2) and 𝑗 = 30.6 (m/s3), which correspond to the same angular velocity of the EE 

describing the circumference in both cases. Fig. 2 shows the desired trajectory and the real one 

obtained for both cases of study. The legends MSC and MC stand for the results obtained with the 

massless and mass cable dynamic models, respectively. Analogously, Fig. 3 shows the tracking 

error and Fig. 4 shows the cable tension distributions generated. 
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(a) Case 1 (b) Case 2 

Figure 2. Position tracking 

  
(a) Case 1 (b) Case 2 

Figure 3. Tracking error 

  
(a) Case 1 (b) Case 2 

Figure 4. Cable tension distribution 

 

In the case of study 1, it can be observed that using the controller designed considering a dynamic 

model with massless cables, yields to non-negligible differences between the expected and the real 

behavior of the robot, which is simulated by means of the proposed dynamic model when 

considering cable mass and elasticity. The tracking performance suffers a great deterioration as 
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the maximum tracking error during the trajectory grows from less than 1 cm to more than 20 cm. 

Furthermore, the real cable force distribution presents an important change compared to the 

expected one, with considerable oscillations and values in the lower limit. On the other hand, we 

can see how that difference between the expected and the real behavior is considerably less in the 

case of study 2, as the robot size is 4 times smaller, therefore, cables total weight is reduced and 

therefore its effect on the robot dynamics, as expected. 

Conclusions 

In this work, a dynamic model for a planar CDPR with 3 DOF and n cables is proposed taking into 

account the effect of cables mass and elasticity. The system of partial differential equations 

corresponding to the cables motion is formulated, together with the boundary conditions imposed 

by the robot geometry and the ordinary differential equations that model the EE movement. A 

methodology based on the Garlekin discretization method is proposed to solve the system. Finally, 

the model is validated under a closed-loop position control strategy in the Cartesian space. The 

effect of the cables mass is assessed by comparing the results obtained under the same control 

strategy using the proposed model and a typical massless model. It can be concluded that the 

geometry of the robot is a key aspect to consider when deciding the level of complexity required 

for the CDPR model to be employed in model-based control strategies. 
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