107 research outputs found

    Fast C-V method to mitigate effects of deep levels in CIGS doping profiles

    Full text link
    In this work, methods to determine more accurate doping profiles in semiconductors is explored where trap-induced artifacts such as hysteresis and doping artifacts are observed. Specifically in CIGS, it is shown that this fast capacitance-voltage (C-V) approach presented here allows for accurate doping profile measurement even at room temperature, which is typically not possible due to the large ratio of trap concentration to doping. Using deep level transient spectroscopy (DLTS) measurement, the deep trap responsible for the abnormal C-V measurement above 200 K is identified. Importantly, this fast C-V can be used for fast evaluation on the production line to monitor the true doping concentration, and even estimate the trap concentration. Additionally, the influence of high conductance on the apparent doping profile at different temperature is investigated

    The use of self-report measures to examine changes in perception in response to fittings using different signal processing parameters

    Get PDF
    Clinicians have long used self-report methods to assess hearing aid benefit. However, there are fewer data as to whether self-report instruments can be used to compare differences between signal processing settings. This study examined how self-perceived performance varied as a function of modifications in signal processing using two self-report measures. Data were collected as part of a double-blind randomised crossover clinical trial. Participants were fit with two fittings: mild processing (slow time constants, disabled frequency lowering) and strong processing (fast time constants, frequency lowering enabled). The speech, spatial, and qualities of hearing (SSQ) questionnaire and the Effectiveness of Auditory Rehabilitation (EAR) questionnaire were collected at multiple time points. Older adults with sensorineural hearing loss who had not used hearing aids within the previous year participated (49 older adults were consented; 40 were included in the final data analyses). Findings show that listeners report a difference in perceived performance when hearing aid features are modified. Both self-report measures were able to capture this change in perceived performance. Self-report measures provide a tool for capturing changes in perceived performance when hearing aid processing features are modified and may enhance provision of an evidence-based hearing aid fitting

    Deep levels in a-plane, high Mg-content MgxZn1-xO epitaxial layers grown by molecular beam epitaxy

    Get PDF
    Deep level defects in n-type unintentionally doped a-plane MgxZn1−xO, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of MgxZn1−xO were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of Ec − 1.4 eV, 2.1 eV, 2.6 V, and Ev + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at Ec − 2.1 eV, Ev + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at Ev + 0.3 eV and Ec − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the Ev + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the Ec − 1.4 eV and Ec − 2.6 eV levels in Mg alloyed samples

    Defect-mediated metastability and carrier lifetimes in polycrystalline (Ag,Cu)(In,Ga)Se-2 absorber materials

    Get PDF
    Using a combination of optical and electrical measurements, we develop a model for metastable defects in Ag-alloyed Cu(In,Ga)Se-2, one of the leading thin film photovoltaic materials. By controlling the pre-selenization conditions of the back contact prior to the growth of polycrystalline (Ag,Cu)(In,Ga)Se-2 absorbers and subsequently exposing them to various stresses (light soaking and dark-heat), we explore the nature and role of metastable defects on the electro-optical and photovoltaic performance of high-efficiency solar cell materials and devices. Positron annihilation spectroscopy indicates that dark-heat exposure results in an increase in the concentration of the selenium-copper divacancy complex (V-Se-V-Cu), attributed to depassivation of donor defects. Deep-level optical spectroscopy finds a corresponding increase of a defect at E-v+0.98eV, and deep-level transient spectroscopy suggests that this increase is accompanied by a decrease in the concentration of mid-bandgap recombination centers. Time-resolved photoluminescence excitation spectroscopy data are consistent with the presence of the V-Se-V-Cu divacancy complex, which may act as a shallow trap for the minority carriers. Light-soaking experiments are consistent with the V-Se-V-Cu optical cycle proposed by Lany and Zunger, resulting in the conversion of shallow traps into recombination states that limit the effective minority carrier recombination time (and the associated carrier diffusion length) and an increase in the doping density that limits carrier extraction in photovoltaic devices.Peer reviewe

    Effect of threading dislocation density on Ni∕n-GaN Schottky diode I-V characteristics

    Full text link
    The impact of threading dislocation density on Ni/n-GaN Schottky barrier diode characteristics is investigated using forward biased current-voltage-temperature (I-V-T) and internal photoemission (IPE) measurements. Nominally, identical metal-organic chemical vapor deposition grown GaN layers were grown on two types of GaN templates on sapphire substrates to controllably vary threading dislocation density (TDD) from 3x10(7) to 7x10(8) cm(-2). I-V-T measurements revealed thermionic emission to be the dominant transport mechanism with ideality factors near 1.01 at room temperature for both sample types. The Schottky barrier heights showed a similar invariance with TDD, with measured values of 1.12-1.13 eV obtained from fitting the I-V-T results to a thermionic emission-diffusion model. The I-V-T results were verified by IPE measurements made on the same diodes, confirming that the Ni/n-GaN barrier heights do not show a measurable TDD dependence for the TDD range measured here. In apparent contrast to this result is that the measured forward bias I-V characteristics indicate a shift in the observed forward bias turn-on voltage such that at the higher TDD value investigated here, a larger turn-on voltage (lower current) is observed. This difference is attributed to localized current blocking by high potential barrier regions surrounding threading dislocations that intersect the Ni/GaN interface. A simple model is presented that reconciles both the observed voltage shift and variations in the extracted Richardson constant as a function of threading dislocation density. With this model, an average local barrier surrounding dislocation of similar to 0.2 V is obtained, which diverts current flow across the forward biased Schottky interface to nondislocated regions. (c) 2006 American Institute of Physics

    High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor

    Get PDF
    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structurefunction relationship of GPCRs. © 2014 Bill et al

    The Association between Mental Health and Violence among a Nationally Representative Sample of College Students from the United States

    Get PDF
    Objectives Recent violent attacks on college campuses in the United States have sparked discussions regarding the prevalence of psychiatric disorders and the perpetration of violence among college students. While previous studies have examined the potential association between mental health problems and violent behavior, the overall pattern of findings flowing from this literature remain mixed and no previous studies have examined such associations among college students. Methods The current study makes use of a nationally representative sample of 3,929 college students from the National Epidemiologic Study on Alcohol and Related Conditions (NESARC) to examine the prevalence of seven violent behaviors and 19 psychiatric disorder diagnoses tapping mood, anxiety, personality, and substance use disorders. Associations between individual and composite psychiatric disorder diagnoses and violent behaviors were also examined. Additional analyses were adjusted for the comorbidity of multiple psychiatric diagnoses. Results The results revealed that college students were less likely to have engaged in violent behavior relative to the non-student sample, but a substantial portion of college students had engaged in violent behavior. Age- and sex-standardized prevalence rates indicated that more than 21% of college students reported at least one violent act. In addition, more than 36% of college students had at least one diagnosable psychiatric disorder. Finally, the prevalence of one or more psychiatric disorders significantly increased the odds of violent behavior within the college student sample. Conclusions These findings indicate that violence and psychiatric disorders are prevalent on college campuses in the United States, though perhaps less so than in the general population. In addition, college students who have diagnosable psychiatric disorders are significantly more likely to engage in various forms of violent behavior

    Coordinated strategy for a model-based decision support tool for coronavirus disease, Utah, USA

    Get PDF
    The coronavirus disease pandemic has highlighted the key role epidemiologic models play in supporting public health decision-making. In particular, these models provide estimates of outbreak potential when data are scarce and decision-making is critical and urgent. We document the integrated modeling response used in the US state of Utah early in the coronavirus disease pandemic, which brought together a diverse set of technical experts and public health and healthcare officials and led to an evidence-based response to the pandemic. We describe how we adapted a standard epidemiologic model; harmonized the outputs across modeling groups; and maintained a constant dialogue with policymakers at multiple levels of government to produce timely, evidence-based, and coordinated public health recommendations and interventions during the first wave of the pandemic. This framework continues to support the state's response to ongoing outbreaks and can be applied in other settings to address unique public health challenges
    • …
    corecore