756 research outputs found

    The diffusion approximation. An application to radiative transfer in clouds

    Get PDF
    It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system

    A simulation of remote sensor systems and data processing algorithms for spectral feature classification

    Get PDF
    A computational model of the deterministic and stochastic processes involved in multispectral remote sensing was designed to evaluate the performance of sensor systems and data processing algorithms for spectral feature classification. Accuracy in distinguishing between categories of surfaces or between specific types is developed as a means to compare sensor systems and data processing algorithms. The model allows studies to be made of the effects of variability of the atmosphere and of surface reflectance, as well as the effects of channel selection and sensor noise. Examples of these effects are shown

    Solar radiance models for determination of ERBE scanner filter factor

    Get PDF
    Shortwave spectral radiance models for use in the spectral correction algorithms for the ERBE Scanner Instrument are provided. The required data base was delivered to the ERBe Data Reduction Group in October 1984. It consisted of two sets of data files: (1) the spectral bidirectional angular models and (2) the spectral flux modes. The bidirectional models employ the angular characteristics of reflection by the Earth-atmosphere system and were derived from detailed radiance calculations using a finite difference model of the radiative transfer process. The spectral flux models were created through the use of a delta-Eddington model to economically simulate the effects of atmospheric variability. By combining these data sets, a wide range of radiances may be approximated for a number of scene types

    Earth feature identification for onboard multispectral data editing: Computational experiments

    Get PDF
    A computational model of the processes involved in multispectral remote sensing and data classification is developed as a tool for designing smart sensors which can process, edit, and classify the data that they acquire. An evaluation of sensor system performance and design tradeoffs involves classification rates and errors as a function of number and location of spectral channels, radiometric sensitivity and calibration accuracy, target discrimination assignments, and accuracy and frequency of compensation for imaging conditions. This model provides a link between the radiometric and statistical properties of the signals to be classified and the performance characteristics of electro-optical sensors and data processing devices. Preliminary computational results are presented which illustrate the editing performance of several remote sensing approaches

    European emissions of HCFC-22 based on eleven years of high frequency atmospheric measurements and a Bayesian inversion method

    Get PDF
    HCFC-22 (CHClF2), a stratospherie ozone depleting substance and a powerful greenhouse gas, is the third most abundant anthropogenic halocarbon in the atmosphere. Primarily used in refrigeration and air conditioning systems, its global production and consumption have increased during the last 60 years, with the global increases in the last decade mainly attributable to developing countries. In 2007, an adjustment to the Montreal Protocol for Substances that Deplete the Ozone Layer called for an accelerated phase out of HCFCs, implying a 75% reduction (base year 1989) of HCFC production and consumption by 2010 in developed countries against the previous 65% reduction. In Europe HCFC-22 is continuously monitored at the two sites Mace Head (Ireland) and Monte Cimone (Italy). Combining atmospheric observations with a Bayesian inversion technique, we estimated fluxes of HCFC-22 from Europe and from eight macro-areas within it, over an 11-year period from January 2002 to December 2012, during which the accelerated restrictions on HCFCs production and consumption have entered into force. According to our study, the maximum emissions over the entire domain was in 2003 (38.2 +/- 4.7 Gg yr(-1)), and the minimum in 2012 (12.1 +/- 2.0 Gg yr(-1)); emissions continuously decreased between these years, except for secondary maxima in the 2008 and 2010. Despite such a decrease in regional emissions, background values of HCFC-22 measured at the two European stations over 2002-2012 are still increasing as a consequence of global emissions, in part from developing countries, with an average trend of ca 7.0 ppt yr(-1). However, the observations at the two European stations show also that since 2008 a decrease in the global growth rate has occurred. In general, our European emission estimates are in good agreement with those reported by previous studies that used different techniques. Since the currently dominant emission source of HCFC-22 is from banks, we assess the banks' size and their contribution to the total European emissions up to 2030, and we project a fast decrease approaching negligible emissions in the last five years of the considered period. Finally, inversions conducted over three month periods showed evidence for a seasonal cycle in emissions in regions in the Mediterranean basin but not outside it. Emissions derived from regions in the Mediterranean basin were ca. 25% higher in warmer months than in colder months. (C) 2015 The Authors. Published by Elsevier Ltd

    Coupling Impedance of the CERN SPS beam position monitors

    Get PDF
    A detailed knowledge of the beam coupling impedance of the CERN Super Proton Synchrotron (SPS) is required in order to operate this machine with a higher intensity for the foreseen Large Hadron Collider (LHC) luminosity upgrade. A large number of Beam Position Monitors (BPMs) is currently installed in the SPS, and this is why their contribution to the SPS impedance has to be assessed. This paper focuses on electromagnetic (EM) simulations and bench measurements of the longitudinal and transverse impedance generated by the horizontal and vertical BPMs installed in the SPS machine

    Nonlinear analysis of spacecraft thermal models

    Full text link
    We study the differential equations of lumped-parameter models of spacecraft thermal control. Firstly, we consider a satellite model consisting of two isothermal parts (nodes): an outer part that absorbs heat from the environment as radiation of various types and radiates heat as a black-body, and an inner part that just dissipates heat at a constant rate. The resulting system of two nonlinear ordinary differential equations for the satellite's temperatures is analyzed with various methods, which prove that the temperatures approach a steady state if the heat input is constant, whereas they approach a limit cycle if it varies periodically. Secondly, we generalize those methods to study a many-node thermal model of a spacecraft: this model also has a stable steady state under constant heat inputs that becomes a limit cycle if the inputs vary periodically. Finally, we propose new numerical analyses of spacecraft thermal models based on our results, to complement the analyses normally carried out with commercial software packages.Comment: 29 pages, 4 figure

    Transverse Impedance of LHC Collimators

    Get PDF
    The transverse impedance in the LHC is expected to be dominated by the numerous collimators, most of which are made of Fibre-Reinforced-Carbon to withstand the impacts of high intensity proton beams in case of failures, and which will be moved very close to the beam, with full gaps of few millimetres, in order to protect surrounding super-conducting equipments. We present an estimate of the transverse resistive-wall impedance of the LHC collimators, the total impedance in the LHC at injection and top energy, the induced coupled-bunch growth rates and tune shifts, and finally the result of the comparison of the theoretical predictions with measurements performed in 2004 and 2006 on a prototype collimator installed in the SPS

    CFRP strengthened continuous concrete beams.

    Get PDF
    yesThis paper reports the testing of five reinforced concrete continuous beams strengthened in flexure with externally bonded carbon-fibre-reinforced polymer (CFRP) laminates. All beams had the same geometrical dimensions and internal steel reinforcement. The main parameters studied were the position and form of the CFRP laminates. Three of the beams were strengthened using different arrangements of CFRP plate reinforcement, and one was strengthened using CFRP sheets. The performance of the CFRP-strengthened beams was compared with that of an unstrengthened control beam. Peeling failure was the dominant mode of failure for all the strengthened beams tested. The beam strengthened with both top and bottom CFRP plates produced the highest load capacity. It was found that the longitudinal elastic shear stresses at the adhesive/concrete interface calculated at beam failure were close to the limiting value recommended in Concrete Society Technical Report 55
    corecore