69 research outputs found

    Demonstration of a Hybrid Space Architecture During RIMPAC 2020

    Get PDF
    The Micro-Satellite Military Utility (MSMU) Project Arrangement (PA) is an agreement under the Responsive Space Capabilities (RSC) Memorandum of Understanding (MOU) that involves the Departments and Ministries of Defence of Australia, Canada, Germany, Italy, the Netherlands, New Zealand, Norway, United Kingdom and United States. MSMU’s charter is to inform a space enterprise that provides military users with reliable access to a broad spectrum of information in an opportunistic environment. Research and Development teams from MSMU partner nations supported Exercise Rim of the Pacific (RIMPAC) 2020 which took place 17 to 31 August 2020 in the Hawaiian region. RIMPAC 2020 provided an opportunity to explore the military utility of a Hybrid Space Architecture (HSA) of satellites including traditional government and commercial satellites, as well as micro-satellites and nanosatellites, by leveraging contributions across the MSMU partner nations. The objective was to continue testing the hypothesis that an HSA, mostly composed of small satellites, can bring significant value to the operational theatre. The MSMU PA partner nations have leveraged several multi-national exercises, with the first being the Exercise RIMPAC 2018. Previous exercises enabled multinational technology advancements, interoperability testing, process refinement, and capability developments to make advancements towards MSMU’s goal to address the warfighter’s need for diverse ISR capabilities. The most recent accomplishment was a major integration effort across mission planning tools, space-based Intelligence, Surveillance and Reconnaissance (ISR) data providers, and exploitation tools. The MSMU team accessed ~256 space-based sensors (EO – Electro Optical, SAR – Synthetic Aperture Radar, AIS – Automatic Identification System) to collect maritime domain and ISR data over a harbor, airfields and open sea. Data was exploited via international channels in order to determine the success rate of capturing pertinent data to be later exploited and disseminated. This paper describes results from the experiment and offers insights into the HSA military utility

    Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight

    Get PDF
    The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. For 14 of these events, this radiation was reflected from the ice. The dominant contribution to the radiation from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. This radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of 36km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations. In addition, we find that the Monte Carlo simulation of the ANITA data set is in agreement with the total number of observed events and with the properties of those events.Comment: Added more explanation of the experimental setup and textual improvement

    Modeling Sea Bottom Hyperspectral Reflectance

    No full text
    Over the near-ultraviolet (UV) and visible spectrum the reflectance from mineral compounds and vegetation is predominantly due to absorption and scattering in the bulk material. Except for a factor of scale, the radiative transfer mechanism is similar to that seen in murky optically complex waters. We therefore adapted a semi-empirical algebraic irradiance model developed by Albert and Mobley to calculate the irradiance reflectance from both mineral compounds and vegetation commonly found on the sea bottom. This approach can be used to accurately predict the immersed reflectance spectra given the reflectance measured in air. When applied to mineral-based compounds or various types of marine vegetation, we obtain a simple two-parameter fit that accurately describes the key features of the reflectance spectra. The non-linear spectral combination effect as a function of the thickness of vegetation growing on a mineral substrate is then accounted for by a third parameter

    Potential Discrimination of Toxic Industrial Chemical Effects on Poplar, Canola and Wheat, Detectable in Optical Wavelengths 400–2450 nm

    No full text
    This research examined the spectral response of poplar (Populus deltoides, Populus trichocarpa), wheat (Triticum aestivum), and canola (Brassica napus) leaves subjected to fumigation with gaseous phase toxic industrial chemical gases (TICs). The gases include ammonia (NH ), sulphur dioxide (SO ), hydrogen sulphide (H S), chlorine (Cl ), and hydrogen cyanide (HCN). This study aimed to determine if: 1) vegetation subjected to TICs could be distinguished from background vegetation during varying growth stages and environmental stresses; and, 2) different TICs could be distinguished based on the spectral response of vegetation. The results showed that both environmental and TICs induced similar spectral features inherent to plants, which are related primarily to chlorophyll and water loss. These features include pigments in the visible and cellulose, lignin, lipids starches, and sugars in the SWIR. Although no specific spectral features could be tied to individual TICs an analysis of the data using vegetation indices showed that the TICs and environmental stresses result in diagnostic trends from healthy mature to highly stressed leaves. In addition combinations of specific indices could be used to distinguish the effects of NH , SO , Cl and their effect from that of other treatments of the study. The continued goal for this research program is to develop a remote detection capability for hazardous events such as a toxic gas leak. Our findings at the leaf level suggest that damage can be detected within 48 hrs and should last for an extended period. Thus, the next experimental step is to test if the results shown here at the leaf level can also be detected with airborne and satellites systems
    • 

    corecore