130 research outputs found

    Heregulin β1 induces the down regulation and the ubiquitin-proteasome degradation pathway of p185HER2 oncoprotein

    Get PDF
    AbstractAnalysis of the fate of the p185HER2 oncoprotein following activation by heregulin β1 revealed the induction of the tyrosine-phosphorylation, down-modulation, and polyubiquitination of p185HER2. Receptor ubiquitination was suppressed in cells treated with heregulin β1 in the presence of sodium azide, an inhibitor of ATP-dependent reactions, or genistein, a tyrosine kinase protein inhibitor, indicating the requirement for kinase activity and ATP in p185HER2 polyubiquitination. Ubiquitinated p185HER2 was degradated by the 26S proteasome proteolytic pathway. Kinetics and inhibition experiments indicated that endocytosis of the receptor occurs downstream of the initiation of the degradation process

    Pengembangan Buku Ajar Biologi Sel dengan Pendekatan Bioinformatika

    Get PDF
    Textbooks are learning guide books used by students in order to help achieve the goals of national education. Development of textbooks is one of the ways in which to facilitate the achievement of learning indicators. Development of Cell Biology textbooks by using bioinformatics approaches Dick and Carey development model. Textbooks developed validated by subject matter experts, instructional media experts, individual testing 15 students, and 15 students were group trial. Validation results matter experts declared feasible by 84% in good categories. The results of the validation study media experts declared feasible by 82.4% in good categories.Buku ajar merupakan buku panduan pembelajaran yang digunakan oleh siswa guna membantu mencapai tujuan pendidikan nasional. Pengembangan buku ajar merupakan salah satu cara yang dilakukan untuk memfasilitasi tercapainya indikator pembelajaran. Pengembangan buku ajar Biologi Sel dengan pendekatan Bioinformatika menggunakan model pengembangan Dick and Carey. Buku ajar yang dikembangkan divalidasi oleh ahli materi, ahli media pembelajaran, 15 mahasiswa uji coba perorangan, dan 15 mahasiswa uji coba kelompok sedang. Hasil validasi ahli materi menyatakan layak sebesar 84% dengan kategori baik. Hasil validasi ahli media pembelajaran menyatakan layak sebesar 82,4% dengan kategori baik

    Surface stress of Ni adlayers on W(110): the critical role of the surface atomic structure

    Full text link
    Puzzling trends in surface stress were reported experimentally for Ni/W(110) as a function of Ni coverage. In order to explain this behavior, we have performed a density-functional-theory study of the surface stress and atomic structure of the pseudomorphic and of several different possible 1x7 configurations for this system. For the 1x7 phase, we predict a different, more regular atomic structure than previously proposed based on surface x-ray diffraction. At the same time, we reproduce the unexpected experimental change of surface stress between the pseudomorphic and 1x7 configuration along the crystallographic surface direction which does not undergo density changes. We show that the observed behavior in the surface stress is dominated by the effect of a change in Ni adsorption/coordination sites on the W(110) surface.Comment: 14 pages, 3 figures Published in J. Phys.: Condens. Matter 24 (2012) 13500

    The 67-kDa laminin receptor originated from a ribosomal protein that acquired a dual function during evolution.

    Get PDF
    The 67-kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that mediates high-affinity interactions between cells and laminin. Overexpression of this protein in tumor cells has been related to tumor invasion and metastasis. Thus far, only a full-length gene encoding a 37-kDa precursor protein (37LRP) has been isolated. The finding that the cDNA for the 37LRP is virtually identical to a cDNA encoding the ribosomal protein p40 has suggested that 37LRP is actually a component of the translational machinery, with no laminin-binding activity. On the other hand, a peptide of 20 amino acids deduced from the sequence of 37LR/p40 was shown to exhibit high laminin-binding activity. The evolutionary relationship between 23 sequences of 37LRP/p40 proteins was analyzed. This phylogenetic analysis indicated that all of the protein sequences derive from orthologous genes and that the 37LRP is indeed a ribosomal protein that acquired the novel function of laminin receptor during evolution. The evolutionary analysis of the sequence identified as the laminin-binding site in the human protein suggested that the acquisition of the laminin-binding capability is linked to the palindromic sequence LMWWML, which appeared during evolution concomitantly with laminin

    Feasibility of self-collection of fecal specimens by randomly sampled women for health-related studies of the gut microbiome

    Get PDF
    BACKGROUND: The field of microbiome research is growing rapidly. We developed a method for self-collection of fecal specimens that can be used in population-based studies of the gut microbiome. We conducted a pilot study to test the feasibility of our methods among a random sample of healthy, postmenopausal women who are members of Kaiser Permanente Colorado (KPCO). We aimed to collect questionnaire data, fecal and urine specimens from 60 women, aged 55–69, who recently had a normal screening mammogram. We designed the study such that all questionnaire data and specimens could be collected at home. RESULTS: We mailed an invitation packet, consent form and opt-out postcard to 300 women, then recruited by telephone women who did not opt-out. Verbally consented women were mailed an enrollment package including a risk factor questionnaire, link to an online diet questionnaire, specimen collection kit, and instructions for collecting stool and urine. Specimens were shipped overnight to the biorepository. Of the 300 women mailed an invitation packet, 58 (19%) returned the opt-out postcard. Up to 3 attempts were made to telephone the remaining women, of whom 130 (43%) could not be contacted, 23 (8%) refused, and 12 (4%) were ineligible. Enrollment packages were mailed to 77 women, of whom 59 returned the risk factor questionnaire and specimens. We found no statistically significant differences between enrolled women and those who refused participation or could not be contacted. CONCLUSIONS: We demonstrated that a representative sample of women can be successfully recruited for a gut microbiome study; however, significant personal contact and carefully timed follow-up from the study personnel are required. The methods employed by our study could successfully be applied to analytic studies of a wide range of clinical conditions that have been postulated to be influenced by the gut microbial population

    Fragment-based discovery of a regulatory site in thioredoxin glutathione reductase acting as "doorstop" for NADPH entry

    Get PDF
    Members of the FAD/NAD-linked reductase family are recognized as crucial targets in drug development for cancers, inflammatory disorders, and infectious diseases. However, individual FAD/NAD reductases are difficult to inhibit in a selective manner with off target inhibition reducing usefulness of identified compounds. Thioredoxin glutathione reductase (TGR), a high molecular weight thioredoxin reductase-like enzyme, has emerged as a promising drug target for the treatment of schistosomiasis, a parasitosis afflicting more than 200 million people. Taking advantage of small molecules selected from a high-throughput screen and using X-ray crystallography, functional assays, and docking studies, we identify a critical secondary site of the enzyme. Compounds binding at this site interfere with well-known and conserved conformational changes associated with NADPH reduction, acting as a doorstop for cofactor entry. They selectivity inhibit TGR from Schistosoma mansoni and are active against parasites in culture. Since many members of the FAD/NAD-linked reductase family have similar catalytic mechanisms the unique mechanism of inhibition identified in this study for TGR broadly opens new routes to selectively inhibit homologous enzymes of central importance in numerous diseases

    k-Space Hyperspectral Imaging by a Birefringent Common-Path Interferometer

    Get PDF
    Fourier-plane microscopy is a powerful tool for measuring the angular optical response of a plethora of materials and photonic devices. Among them, optical microcavities feature distinctive energy-momentum dispersions, crucial for a broad range of fundamental studies and applications. However, measuring the whole momentum space (k-space) with sufficient spectral resolution using standard spectroscopic techniques is challenging, requiring long and alignment-sensitive scans. Here, we introduce a k-space hyperspectral microscope, which uses a common-path birefringent interferometer to image photoluminescent organic microcavities, obtaining an angle- and wavelength-resolved view of the samples in only one measurement. The exceptional combination of angular and spectral resolution of our technique allows us to reconstruct a three-dimensional (3D) map of the cavity dispersion in the energy-momentum space, revealing the polarization-dependent behavior of the resonant cavity modes. Furthermore, we apply our technique for the characterization of a dielectric nanodisk metasurface, evidencing the angular and spectral behavior of its anapole mode. This approach is able to provide a complete optical characterization for materials and devices with nontrivial angle-/wavelength-dependent properties, fundamental for future developments in the fields of topological photonics and optical metamaterials

    Extraribosomal functions associated with the C terminus of the 37/67 kDa laminin receptor are required for maintaining cell viability

    Get PDF
    The 37/67 kDa laminin receptor (LAMR) is a multifunctional protein, acting as an extracellular receptor, localizing to the nucleus, and playing roles in rRNA processing and ribosome assembly. LAMR is important for cell viability; however, it is unclear which of its functions are essential. We developed a silent mutant LAMR construct, resistant to siRNA, to rescue the phenotypic effects of knocking down endogenous LAMR, which include inhibition of protein synthesis, cell cycle arrest, and apoptosis. In addition, we generated a C-terminal-truncated silent mutant LAMR construct structurally homologous to the Archaeoglobus fulgidus S2 ribosomal protein and missing the C-terminal 75 residues of LAMR, which displays more sequence divergence. We found that HT1080 cells stably expressing either silent mutant LAMR construct still undergo arrest in the G1 phase of the cell cycle when treated with siRNA. However, the expression of full-length silent mutant LAMR rescues cell viability, whereas the expression of the C-terminal-truncated LAMR does not. Interestingly, we also found that both silent mutant constructs restore protein translation and localize to the nucleus. Our findings indicate that the ability of LAMR to regulate viability is associated with its C-terminal 75 residues. Furthermore, this function is distinct from its role in cell proliferation, independent of its ribosomal functions, and may be regulated by a nonnuclear localization
    corecore