4 research outputs found
Protein with negative surface charge distribution, Bnr1, shows characteristics of aDNAâmimic protein andmay be involved in the adaptation of Burkholderia cenocepacia
Adaptation of opportunistic pathogens to their host environment requires reprogramming of a vast array of genes to facilitate survival in the host. Burkholderia cenocepacia, a Gram-negative bacterium with a large genome of âŒ8âMb that colonizes environmental niches, is exquisitely adaptable to the hypoxic environment of the cystic fibrosis lung and survives in macrophages. We previously identified an immunoreactive acidic protein encoded on replicon 3, BCAS0292. Deletion of the BCAS0292 gene significantly altered the abundance of 979 proteins by 1.5-fold or more; 19 proteins became undetectable while 545 proteins showed â„1.5-fold reduced abundance, suggesting the BCAS0292 protein is a global regulator. Moreover, the âBCAS0292 mutant showed a range of pleiotropic effects: virulence and host-cell attachment were reduced, antibiotic susceptibility was altered, and biofilm formation enhanced. Its growth and survival were impaired in 6% oxygen. In silico prediction of its three-dimensional structure revealed BCAS0292 presents a dimeric ÎČ-structure with a negative surface charge. The ÎBCAS0292 mutant displayed altered DNA supercoiling, implicated in global regulation of gene expression. Three proteins were identified in pull-downs with FLAG-tagged BCAS0292, including the Histone H1-like protein, HctB, which is recognized as a global transcriptional regulator. We propose that BCAS0292 protein, which we have named Burkholderia negatively surface-charged regulatory protein 1 (Bnr1), acts as a DNA-mimic and binds to DNA-binding proteins, altering DNA topology and regulating the expression of multiple genes, thereby enabling the adaptation of B. cenocepacia to highly diverse environments
Protein with negative surface charge distribution, Bnr1, shows characteristics of a DNAâmimic protein and may be involved in the adaptation of Burkholderia cenocepacia
Adaptation of opportunistic pathogens to their host environment requires reprogramming of a vast array of genes to facilitate survival in the host. Burkholderia cenocepacia, a Gramânegative bacterium with a large genome of âŒ8âMb that colonizes environmental niches, is exquisitely adaptable to the hypoxic environment of the cystic fibrosis lung and survives in macrophages. We previously identified an immunoreactive acidic protein encoded on replicon 3, BCAS0292. Deletion of the BCAS0292 gene significantly altered the abundance of 979 proteins by 1.5âfold or more; 19 proteins became undetectable while 545 proteins showed â„1.5âfold reduced abundance, suggesting the BCAS0292 protein is a global regulator. Moreover, the âBCAS0292 mutant showed a range of pleiotropic effects: virulence and hostâcell attachment were reduced, antibiotic susceptibility was altered, and biofilm formation enhanced. Its growth and survival were impaired in 6% oxygen. In silico prediction of its threeâdimensional structure revealed BCAS0292 presents a dimeric ÎČâstructure with a negative surface charge. The ÎBCAS0292 mutant displayed altered DNA supercoiling, implicated in global regulation of gene expression. Three proteins were identified in pullâdowns with FLAGâtagged BCAS0292, including the Histone H1âlike protein, HctB, which is recognized as a global transcriptional regulator. We propose that BCAS0292 protein, which we have named Burkholderia negatively surfaceâcharged regulatory protein 1 (Bnr1), acts as a DNAâmimic and binds to DNAâbinding proteins, altering DNA topology and regulating the expression of multiple genes, thereby enabling the adaptation of B. cenocepacia to highly diverse environments