11 research outputs found

    Voltammetric detection of drugs considered as emerging pollutant in water at carbon nanofiber composite electrode

    Get PDF
    In this study, carbon nanofiber-epoxy (CNF) composite electrode was tested using cyclic voltammetry (CV), differential-pulsed voltammetry (DPV) and square-wave voltammetry (SWV) techniques for the quantitative determination of naproxen (NPX), which was chosen the model for the anti-inflammatory drugs as emerging pollutants from water. The best performance in relation with the sensitivity and the detection potential value was obtained by employing DPV, and in relation with the lowest limit of detection and quantification was achieved by SWV under operating conditions of modulation amplitude of 0.2V, step potential of 0.05V and a scan rate of 0.025V

    High potential for CH4 emission mitigation from oil infrastructure in one of EU's major production regions

    Get PDF
    Ambitious methane (CH4) emission mitigation represents one of the most effective opportunities to slow the rate of global warming over the next decades. The oil and gas (O&G) sector is a significant source of methane emissions, with technically feasible and cost-effective emission mitigation options. Romania, a key O&G producer within the EU, with the second highest reported annual CH4 emissions from the energy sector in the year 2020 (Greenhouse Gas Inventory Data - Comparison by Category, 2022), can play an important role towards the EU's emission reduction targets. In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground- and drone-based measurement techniques. Measured emissions were characterized by heavily skewed distributions, with 10% of the sites accounting for more than 70% of total emissions. Integrating the results from all site-level quantifications with different approaches, we derive a central estimate of 5.4 kg h-1 per site of CH4 (3.6 %-8.4 %, 95% confidence interval) for oil production sites. This estimate represents the third highest when compared to measurementbased estimates of similar facilities from other production regions. Based on our results, we estimate a total of 120 kt CH4 yr-1 (range: 79-180 kt yr-1) from oil production sites in our studied areas in Romania. This is approximately 2.5 times higher than the reported emissions from the entire Romanian oil production sector for 2020. Based on the source-level characterization, up to three-quarters of the detected emissions from oil production sites are related to operational venting. Our results suggest that O&G production infrastructure in Romania holds a massive mitigation potential, specifically by implementing measures to capture the gas and minimize operational venting and leaks

    Simultaneous Voltammetric/Amperometric Determination of Sulfide and Nitrite in Water at BDD Electrode

    No full text
    This work reported new voltammetric/amperometric-based protocols using a commercial boron-doped diamond (BDD) electrode for simple and fast simultaneous detection of sulfide and nitrite from water. Square-wave voltammetry operated under the optimized working conditions of 0.01 V step potential, 0.5 V modulation amplitude and 10 Hz frequency allowed achieving the best electroanalytical parameters for the simultaneous detection of nitrite and sulfide. For practical in-field detection applications, the multiple-pulsed amperometry technique was operated under optimized conditions, i.e., −0.5 V/SCE for a duration of 0.3 s as conditioning step, +0.85 V/SCE for a duration of 3 s that assure the sulfide oxidation and +1.25 V/SCE for a duration of 0.3 s, where the nitrite oxidation occurred, which allowed the simultaneously detection of sulfide and nitrite without interference between them. Good accuracy was found for this protocol in comparison with standardized methods for each anion. Also, no interference effect was found for the cation and anion species, which are common in the water matrix

    Fast simultaneous electrochemical detection of tetracycline and fluoxetine in water

    No full text
    The electrochemical methods-based protocol for simultaneous detection of tetracycline (TC) from antibiotics class and fluoxetine (FXT) from anti-depressive pharmaceuticals class, which belongs to emerging pollutants from water, was developed in this study using carbon nanofiber-epoxy composite electrode (CNF). The electrochemical behaviour of each pharmaceutical on CNF was considered the basis for simultaneous detection of both pharmaceuticals from water. TC electrooxidation on CNF occurred in two steps and, consequently, two detection potentials are considered. FXT electrooxidation occurred in one step that is overlaid to the first step of TC detection, this step being considered as cumulative for both pharmaceuticals. Each electrochemical method of cyclic voltammetry (CV) and differential-pulsed voltammetry (DPV) allowed detecting cumulative presence of TC and FXT at the detection potential ranged between 0.65 and 0.815 V vs. SCE and the selective detection of TC at the detection potential ranged between 0.956 and 1.14 V vs. SCE. The electroanalytical parameters related to the lowest limit of detection and sensitivity recommended this electrode to exhibit the potential for practical applications in the electrochemical detection of certain pharmaceuticals as emerging pollutants from water.ChemE/Materials for Energy Conversion & Storag

    New Methodological Approach to Classify Educational Institutions—A Case Study on Romanian High Schools

    No full text
    Since 2021, the National Evaluation exam in Romania (the exam aimed to assess 14- to 15-year-old students’ knowledge at the end of lower secondary education and just before high school) has presented a novel examination structure that resembles PISA tests. The current investigation analyses the 2021 National Evaluation exam results compared to the results obtained in the previous two years (2019–2020) as an evaluation of upper education institutions’ effectiveness in Romania. The results put forward the same conclusions as proposed by extant literature on Bucharest high schools. Even though the educational institutions show apparent progress and great adaptability to change, a more in-depth analysis reveals great inequality between educational institutions. As in the case of Bucharest, nationally there are only a small number of top-performing high schools in Romania, with the majority of high schools ranking in the lowest category as conceptualised in the study. The current investigation puts together a novel methodology for classification based on the main instruments proposed in literature: a letter grade classification and Turner’s f-index. The results and the methodological proposal are especially relevant considering the latest PISA (2018) conclusions on Romania characterising the national educational system as underperforming

    Satellite validation strategy assessments based on the AROMAT campaigns

    No full text
    The Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaigns took place in Romania in September 2014 and August 2015. They focused on two sites: the Bucharest urban area and large power plants in the Jiu Valley. The main objectives of the campaigns were to test recently developed airborne observation systems dedicated to air quality studies and to verify their applicability for the validation of space-borne atmospheric missions such as the TROPOspheric Monitoring Instrument (TROPOMI)/Sentinel-5 Precursor (S5P). We present the AROMAT campaigns from the perspective of findings related to the validation of tropospheric NO2, SO2, and H2CO. We also quantify the emissions of NOx and SO2 at both measurement sites. We show that tropospheric NO2 vertical column density (VCD) measurements using airborne mapping instruments are well suited for satellite validation in principle. The signal-to-noise ratio of the airborne NO2 measurements is an order of magnitude higher than its space-borne counterpart when the airborne measurements are averaged at the TROPOMI pixel scale. However, we show that the temporal variation of the NO2 VCDs during a flight might be a significant source of comparison error. Considering the random error of the TROPOMI tropospheric NO2 VCD (σ), the dynamic range of the NO2 VCDs field extends from detection limit up to 37 σ (2.6×1016 molec. cm−2) and 29 σ (2×1016 molec. cm−2) for Bucharest and the Jiu Valley, respectively. For both areas, we simulate validation exercises applied to the TROPOMI tropospheric NO2 product. These simulations indicate that a comparison error budget closely matching the TROPOMI optimal target accuracy of 25 % can be obtained by adding NO2 and aerosol profile information to the airborne mapping observations, which constrains the investigated accuracy to within 28 %. In addition to NO2, our study also addresses the measurements of SO2 emissions from power plants in the Jiu Valley and an urban hotspot of H2CO in the centre of Bucharest. For these two species, we conclude that the best validation strategy would consist of deploying ground-based measurement systems at well-identified locations

    High potential for CH<sub>4</sub> emission mitigation from oil infrastructure in one of EU's major production regions

    No full text
    Ambitious methane (CH4) emission mitigation represents one of the most effective opportunities to slow the rate of global warming over the next decades. The oil and gas (O&amp;G) sector is a significant source of methane emissions, with technically feasible and cost-effective emission mitigation options. Romania, a key O&amp;G producer within the EU, with the second highest reported annual CH4 emissions from the energy sector in the year 2020 (Greenhouse Gas Inventory Data - Comparison by Category, 2022), can play an important role towards the EU's emission reduction targets. In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground- and drone-based measurement techniques. Measured emissions were characterized by heavily skewed distributions, with 10% of the sites accounting for more than 70% of total emissions. Integrating the results from all site-level quantifications with different approaches, we derive a central estimate of 5.4 kg h-1 per site of CH4 (3.6 %-8.4 %, 95% confidence interval) for oil production sites. This estimate represents the third highest when compared to measurement-based estimates of similar facilities from other production regions. Based on our results, we estimate a total of 120 kt CH4 yr-1 (range: 79-180 kt yr-1) from oil production sites in our studied areas in Romania. This is approximately 2.5 times higher than the reported emissions from the entire Romanian oil production sector for 2020. Based on the source-level characterization, up to three-quarters of the detected emissions from oil production sites are related to operational venting. Our results suggest that O&amp;G production infrastructure in Romania holds a massive mitigation potential, specifically by implementing measures to capture the gas and minimize operational venting and leaks.</p
    corecore