843 research outputs found

    High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization

    Get PDF
    We report on instabilities in high power impulse magnetron sputtering plasmas which are likely to be of the generalized drift wave type. They are characterized by well defined regions of high and low plasma emissivity along the racetrack of the magnetron and cause periodic shifts in floating potential. The azimuthal mode number m depends on plasma current, plasma density, and gas pressure. The structures rotate in × direction at velocities of ∼10 km s−1 and frequencies up to 200 kHz. Collisions with residual gas atoms slow down the rotating wave, whereas increasing ionization degree of the gas and plasma conductivity speeds it up

    Estimating Degradation Costs for Non-Cyclic Usage of Lithium-Ion Batteries

    Get PDF
    Estimating the degradation costs of lithium-ion batteries is essential to the designs of many systems because batteries are increasingly used in diverse applications. In this study, cyclic and calendar degradation models of lithium batteries were considered in optimization problems with randomized non-cyclic batteries use. Such models offer realistic results. Electrical, thermal, and degradation models were applied for lithium nickel cobalt manganese oxide (NMC) and lithium iron phosphate (LFP) technologies. Three possible strategies were identified to estimate degradation costs based on cell models. All three strategies were evaluated via simulations and validated by comparing the results with those obtained by other authors. One strategy was discarded because it overestimates costs, while the other two strategies give good results, and are suitable for estimating battery degradation costs in optimization problems that require deterministic models

    Comparison of lead-acid and li-ion batteries lifetime prediction models in stand-alone photovoltaic systems

    Get PDF
    Several models for estimating the lifetimes of lead-acid and Li-ion (LiFePO4 ) batteries are analyzed and applied to a photovoltaic (PV)-battery standalone system. This kind of system usually includes a battery bank sized for 2.5 autonomy days or more. The results obtained by each model in different locations with very different average temperatures are compared. Two different locations have been considered: the Pyrenees mountains in Spain and Tindouf in Argelia. Classical battery aging models (equivalent full cycles model and rainflow cycle count model) generally used by researchers and software tools are not adequate as they overestimate the battery life in all cases. For OPzS lead-acid batteries, an advanced weighted Ah-throughput model is necessary to correctly estimate its lifetime, obtaining a battery life of roughly 12 years for the Pyrenees and around 5 years for the case Tindouf. For Li-ion batteries, both the cycle and calendar aging must be considered, obtaining more than 20 years of battery life estimation for the Pyrenees and 13 years for Tindouf. In the cases studied, the lifetime of LiFePO4 batteries is around two times the OPzS lifetime. As nowadays the cost of LiFePO4 batteries is around two times the OPzS ones, Li-ion batteries can be competitive with OPzS batteries in PV-battery standalone systems

    Consistent Gravitationally-Coupled Spin-2 Field Theory

    Full text link
    Inspired by the translational gauge structure of teleparallel gravity, the theory for a fundamental massless spin-2 field is constructed. Accordingly, instead of being represented by a symmetric second-rank tensor, the fundamental spin-2 field is assumed to be represented by a spacetime (world) vector field assuming values in the Lie algebra of the translation group. The flat-space theory naturally emerges in the Fierz formalism and is found to be equivalent to the usual metric-based theory. However, the gravitationally coupled theory, with gravitation itself described by teleparallel gravity, is shown not to present the consistency problems of the spin-2 theory constructed on the basis of general relativity.Comment: 16 pages, no figures. V2: Presentation changes, including addition of a new sub-section, aiming at clarifying the text; version accepted for publication in Class. Quantum Grav

    Eliminating ambiguities for quantum corrections to strings moving in AdS4×CP3AdS_4\times \mathbb{CP}^3

    Full text link
    We apply a physical principle, previously used to eliminate ambiguities in quantum corrections to the 2 dimensional kink, to the case of spinning strings moving in AdS4×CP3AdS_4\times \mathbb{CP}^3, thought of as another kind of two dimensional soliton. We find that this eliminates the ambiguities and selects the result compatible with AdS/CFT, providing a solid foundation for one of the previous calculations, which found agreement. The method can be applied to other classical string "solitons".Comment: 18 pages, latex; references added, comments added at end of section 4, a few words changed; footnote added on page 1

    Myalgic encephalomyelitis/chronic fatigue syndrome: A comprehensive review

    Get PDF
    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease of unknown aetiology that is recognized by the World Health Organization (WHO) and the United States Center for Disease Control and Prevention (US CDC) as a disorder of the brain. The disease predominantly affects adults, with a peak age of onset of between 20 and 45 years with a female to male ratio of 3:1. Although the clinical features of the disease have been well established within diagnostic criteria, the diagnosis of ME/CFS is still of exclusion, meaning that other medical conditions must be ruled out. The pathophysiological mechanisms are unclear but the neuro-immuno-endocrinological pattern of CFS patients gleaned from various studies indicates that these three pillars may be the key point to understand the complexity of the disease. At the moment, there are no specific pharmacological therapies to treat the disease, but several studies’ aims and therapeutic approaches have been described in order to benefit patients’ prognosis, symptomatology relief, and the recovery of pre-existing function. This review presents a pathophysiological approach to understanding the essential concepts of ME/CFS, with an emphasis on the population, clinical, and genetic concepts associated with ME/CFS. © 2019 by the authors

    A two-locus genetic interaction between LPHN3 and 11q predicts ADHD severity and long-term outcome

    Get PDF
    The severity of attention-deficit/hyperactivity disorder (ADHD) symptoms is a major predictor of long-term ADHD outcome. To investigate if two-locus interactions might predict ADHD severity, we studied a sample of 1341 individuals from families clustering ADHD, using the Vanderbilt Assessment Scale for Parents. Latent class cluster analysis was used to construct symptom profiles and classify ADHD severity. Single nucleotide polymorphisms (SNPs) spanning ADHD-linked chromosomal regions on chromosomes 4, 5, 10, 11, 12 and 17 were genotyped. SNPs associated with ADHD severity were identified and potential two-locus genetic interactions were tested. We found that SNPs within the LPHN3 gene interact with SNPs spanning the 11q region that contains DRD2 and NCAM1 not only to increase the risk of developing ADHD but also to increase ADHD severity. All these genes are identified to have a major role in shaping both brain development and function. These findings demonstrate that genetic interactions may predict the severity of ADHD, which in turn may predict long-term ADHD outcome
    corecore