156 research outputs found

    Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis

    Get PDF
    Methicillin-resistant Staphylococcus epidermidis (MRSE) bacteria are being recognized as true pathogens as they are able to resist methicillin and commonly form biofilms. Recent studies have shown that antimicrobial peptides (AMPs) are promising agents against biofilm-associated bacterial infections. In this study, we aimed to explore the antibiofilm activity of melittin, either alone or in combination with vancomycin and rifampin, against biofilm-producing MRSE strains. Minimum biofilm preventive concentration (MBPC), minimum biofilm inhibition concentration (MBIC), and minimum biofilm eradication concentration (MBEC), as well as fractional biofilm preventive-, inhibitory-, and eradication concentrations (FBPCi, FBICi, and FBECi), were determined for the antimicrobial agents tested. Cytotoxicity and hemolytic activity of melittin at its synergistic concentration were examined on human embryonic kidney cells (HEK-293) and Red Blood Cells (RBCs), respectively. The effect of melittin on the downregulation of biofilm-associated genes was explored using Real-Time PCR. MBPC, MBIC, and MBEC values for melittin were in the range of 0.625–20, 0.625–20, and 10–40 μg/μL, respectively. Melittin showed high synergy (FBPCi, FBICi and FBECi < 0.5). The synergism resulted in a 64–512-fold, 2–16 and 2–8-fold reduction in melittin, rifampicin and vancomycin concentrations, respectively. The synergistic melittin concentration found to be effective did not manifest either cytotoxicity on HEK-293 or hemolytic activity on RBCs. Results showed that melittin downregulated the expression of biofilm-associated icaA, aap, and psm genes in all isolates tested, ranging from 0.04-folds to 2.11-folds for icaA and from 0.05 to 3.76-folds for aap and psm. The preventive and therapeutic indexes of melittin were improved 8-fold when combined with vancomycin and rifampin. Based on these findings, the combination of melittin with conventional antibiotics could be proposed for treating or preventing biofilm-associated MRSE infections

    Vegetable extracts and nutrients useful in the recovery from helicobacter pylori infection: A systematic review on clinical trials

    Get PDF
    Helicobacter pylori (H. pylori) infections affect almost half of the world’s population, with gradually increasing incidence in developed countries. Eradication of H. pylori may provide signifi-cant benefits to the affected individual by healing a number of gastrointestinal and extra-digestive disorders. But due to increased microbial resistance and lack of patient adherence to the therapy, the eradication rate of H. pylori is below 80% with current pharmacological therapies. The usage of botanicals for their therapeutic purposes and medicinal properties have been increased in last decades. They can be use as alternative H. pylori treatments, especially against drug-resistant strains. Epidemiological studies have revealed that people with lower vegetable and micronutrient intake may be at increased risk of H. pylori infection. We have undertaken a review of clinical trials to evaluate the efficacy of vegetable extracts and micronutrients in patients with H. pylori. Various databases, such as Google Scholar, PubMed, Scopus, Web of Science, and the Cochrane Library, were searched for the articles published in English. A total of 24 clinical studies (15 for vegetable extracts and 9 for micronutrients) were selected to be reviewed and summarized in this article. Vegetable extracts (Broccoli sprouts, curcumin, Burdock complex, and Nigella sativa) and micronutrients (vitamin C and E) were not found to be as effective as single agents in H. pylori eradication, rather their efficacy synergized with conventional pharmacological therapies. Conversely, GutGard was found to be significantly effective as a single agent when compared to placebo control

    Evaluation of bacteriophage as an adjunct therapy for treatment of peri-prosthetic joint infection caused by Staphylococcus aureus

    Get PDF
    Phage therapy offers a potential alternate strategy for the treatment of peri-prosthetic joint infection (PJI), particularly where limited effective antibiotics are available. We undertook preclinical trials to investigate the therapeutic efficacy of a phage cocktail, alone and in combination with vancomycin, to reduce bacterial numbers within the infected joint using a clinically-relevant model of Staphylococcus aureus-induced PJI. Infected animals were randomised to 4 treatment groups, with treatment commencing 21-days post-surgery: bacteriophage alone, vancomycin alone, bacteriophage and vancomycin, and sham. At day 28 post-surgery, animals were euthanised for microbiological and immunological assessment of implanted joints. Treatment with phage alone or vancomycin alone, led to 5-fold and 6.2-fold reductions, respectively in bacterial load within peri-implant tissue compared to shamtreated animals. Compared to sham-treated animals, a 22.5-fold reduction in S. aureus burden was observed within joint tissue of animals that were administered phage in combination with vancomycin, corresponding with decreased swelling in the implanted knee. Microbiological data were supported by evidence of decreased inflammation within the joints of animals administered phage in combination with vancomycin, compared to sham-treated animals. Our findings provide further support for phage therapy as a tolerable and effective adjunct treatment for PJI

    Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin

    Get PDF
    Staphylococcus epidermidis is the major bacterial species found in biofilm-related infections on indwelling medical devices. Microbial biofilms are communities of bacteria adhered to a surface and surrounded by an extracellular polymeric matrix. Biofilms have been associated with increased antibiotic tolerance to the immune system. This increased resistance to conventional antibiotic therapy has lead to the search for new antimicrobial therapeutical agents. Farnesol, a quorum-sensing molecule in Candida albicans, has been described as impairing growth of several different microorganisms and we have previously shown its potential as an adjuvant in antimicrobial therapy against S. epidermidis. However, its mechanism of action in S. epidermidis is not fully known. In this work we better elucidate the role of farnesol against S: epidermidis biofilms using confocal laser scanning microscopy (CLSM). Findings 24 h biofilms were exposed to farnesol, vancomycin or rifampicin and were analysed by CLSM, after stained with a Live/Dead stain, a known indicator of cell viability, related with cell membrane integrity. Biofilms were also disrupted by sonication and viable and cultivable cells were quantified by colony forming units (CFU) plating. Farnesol showed a similar effect as vancomycin, both causing little reduction of cell viability but at the same time inducing significant changes in the biofilm structure. On the other hand, rifampicin showed a distinct action in S. epidermidis biofilms, by killing a significant proportion of biofilm bacteria. Conclusions While farnesol is not very efficient at killing biofilm bacteria, it damages cell membrane, as determined by the live/dead staining, in a similar way as vancomycin.. Furthermore, farnesol might induce biofilm detachment, as determined by the reduced biofilm biomass, which can partially explain the previous findings regarding its role as a possible chemotherapy adjuvant.(undefined

    The Effect of Bacterial Infection on the Biomechanical Properties of Biological Mesh in a Rat Model

    Get PDF
    BACKGROUND: The use of biologic mesh to repair abdominal wall defects in contaminated surgical fields is becoming the standard of practice. However, failure rates and infections of these materials persist clinically. The purpose of this study was to determine the mechanical properties of biologic mesh in response to a bacterial encounter. METHODS: A rat model of Staphylococcus aureus colonization and infection of subcutaneously implanted biologic mesh was used. Samples of biologic meshes (acellular human dermis (ADM) and porcine small intestine submucosa (SIS)) were inoculated with various concentrations of methicillin-resistant Staphylococcus aureus [10(5), 10(9) colony-forming units] or saline (control) prior to wound closure (n = 6 per group). After 10 or 20 days, meshes were explanted, and cultured for bacteria. Histological changes and bacterial recovery together with biomechanical properties were assessed. Data were compared using a 1-way ANOVA or a Mann-Whitney test, with p<0.05. RESULTS: The overall rate of staphylococcal mesh colonization was 81% and was comparable in the ADM and SIS groups. Initially (day 0) both biologic meshes had similar biomechanical properties. However after implantation, the SIS control material was significantly weaker than ADM at 20 days (p = 0.03), but their corresponding modulus of elasticity were similar at this time point (p>0.05). After inoculation with MRSA, a time, dose and material dependent decrease in the ultimate tensile strength and modulus of elasticity of SIS and ADM were noted compared to control values. CONCLUSION: The biomechanical properties of biologic mesh significantly decline after colonization with MRSA. Surgeons selecting a repair material should be aware of its biomechanical fate relative to other biologic materials when placed in a contaminated environment

    Transcription and Translation Products of the Cytolysin Gene psm-mec on the Mobile Genetic Element SCCmec Regulate Staphylococcus aureus Virulence

    Get PDF
    The F region downstream of the mecI gene in the SCCmec element in hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) contains two bidirectionally overlapping open reading frames (ORFs), the fudoh ORF and the psm-mec ORF. The psm-mec ORF encodes a cytolysin, phenol-soluble modulin (PSM)-mec. Transformation of the F region into the Newman strain, which is a methicillin-sensitive S. aureus (MSSA) strain, or into the MW2 (USA400) and FRP3757 (USA300) strains, which are community-acquired MRSA (CA-MRSA) strains that lack the F region, attenuated their virulence in a mouse systemic infection model. Introducing the F region to these strains suppressed colony-spreading activity and PSMα production, and promoted biofilm formation. By producing mutations into the psm-mec ORF, we revealed that (i) both the transcription and translation products of the psm-mec ORF suppressed colony-spreading activity and promoted biofilm formation; and (ii) the transcription product of the psm-mec ORF, but not its translation product, decreased PSMα production. These findings suggest that both the psm-mec transcript, acting as a regulatory RNA, and the PSM-mec protein encoded by the gene on the mobile genetic element SCCmec regulate the virulence of Staphylococcus aureus

    Supreme activity of gramicidin S against resistant, persistent and biofilm cells of staphylococci and enterococci.

    Get PDF
    Three promising antibacterial peptides were studied with regard to their ability to inhibit the growth and kill the cells of clinical strains of Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. The multifunctional gramicidin S (GS) was the most potent, compared to the membranotropic temporin L (TL), being more effective than the innate-defence regulator IDR-1018 (IDR). These activities, compared across 16 strains as minimal bactericidal and minimal inhibitory concentrations (MIC), are independent of bacterial resistance pattern, phenotype variations and/or biofilm-forming potency. For S. aureus strains, complete killing is accomplished by all peptides at 5 × MIC. For E. faecalis strains, only GS exhibits a rapid bactericidal effect at 5 × MIC, while TL and IDR require higher concentrations. The biofilm-preventing activities of all peptides against the six strains with the largest biofilm biomass were compared. GS demonstrates the lowest minimal biofilm inhibiting concentrations, whereas TL and IDR are consistently less effective. In mature biofilms, only GS completely kills the cells of all studied strains. We compare the physicochemical properties, membranolytic activities, model pharmacokinetics and eukaryotic toxicities of the peptides and explain the bactericidal, antipersister and antibiofilm activities of GS by its elevated stability, pronounced cell-penetration ability and effective utilization of multiple modes of antibacterial action

    Inferior outcomes of EU versus US patients treated with CD19 CAR-T for relapsed/refractory large B-cell lymphoma: association with differences in tumor burden, systemic inflammation, bridging therapy utilization, and CAR-T product use

    Get PDF
    Real-world evidence suggests a trend toward inferior survival of patients receiving CD19 chimeric antigen receptor (CAR) T-cell therapy in Europe (EU) and with tisagenlecleucel. The underlying logistic, patient- and disease-related reasons for these discrepancies remain poorly understood. In this multicenter retrospective observational study, we studied the patient-individual journey from CAR-T indication to infusion, baseline features, and survival outcomes in 374 patients treated with tisagenlecleucel (tisa-cel) or axicabtagene-ciloleucel (axi-cel) in EU and the United States (US). Compared with US patients, EU patients had prolonged indication-to-infusion intervals (66 versus 50 d; P < 0.001) and more commonly received intermediary therapies (holding and/or bridging therapy, 94% in EU versus 74% in US; P < 0.001). Baseline lactate dehydrogenase (LDH) (median 321 versus 271 U/L; P = 0.02) and ferritin levels (675 versus 425 ng/mL; P = 0.004) were significantly elevated in the EU cohort. Overall, we observed inferior survival in EU patients (median progression-free survival [PFS] 3.1 versus 9.2 months in US; P < 0.001) and with tisa-cel (3.2 versus 9.2 months with axi-cel; P < 0.001). On multivariate Lasso modeling, nonresponse to bridging, elevated ferritin, and increased C-reactive protein represented independent risks for treatment failure. Weighing these variables into a patient-individual risk balancer (high risk [HR] balancer), we found higher levels in EU versus US and tisa-cel versus axi-cel cohorts. Notably, superior PFS with axi-cel was exclusively evident in patients at low risk for progression (according to the HR balancer), but not in high-risk patients. These data demonstrate that inferior survival outcomes in EU patients are associated with longer time-to-infusion intervals, higher tumor burden/LDH levels, increased systemic inflammatory markers, and CAR-T product use
    corecore