166 research outputs found

    Mass spectrometers and atomic oxygen

    Get PDF
    The likely role of atmospheric atomic oxygen in the recession of spacecraft surfaces and in the shuttle glow has revived interest in the accurate measurement of atomic oxygen densities in the upper atmosphere. The Air Force Geophysics Laboratory is supplying a quadrupole mass spectrometer for a materials interactions flight experiment being planned by the Johnson Space Center. The mass spectrometer will measure the flux of oxygen on test materials and will also identify the products of surface reactions. The instrument will be calibrated at a new facility for producing high energy beams of atomic oxygen at the Los Alamos National Laboratory. The plans for these calibration experiments are summarized

    The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise

    Get PDF
    Numerical simulations of earthquake rupture dynamics are now common, yet it has been difficult to test the validity of thesesimulations because there have been few field observations and no analytic solutions with which to compare the results. This paper describes the Southern California Earthquake Center/U.S. Geological Surve(SCEC/USGS) Dynamic Earthquake Rupture Code Verification Exercise, where codes that simulate spontaneous rupture dynamics in three dimensions are evaluated and the results produced by these codes are compared using Web-based tools. This is the first time that a broad and rigorous examination of numerous spontaneous rupture codes has been performed—a significant advance in this science. The automated process developed to attain this achievement provides for a future where testing of codes is easily accomplished. Scientists who use computer simulations to understand earthquakes utilize a range of techniques. Most of these assume that earthquakes are caused by slip at depth on faults in the Earth, but hereafter the strategies vary. Among the methods used in earthquake mechanics studies are kinematic approaches and dynamic approaches. The kinematic approach uses a computer code that prescribes the spatial and temporal evolution of slip on the causative fault (or faults). These types of simulations are very helpful, especially since they can be used in seismic data inversions to relate the ground motions recorded in the field to slip on the fault(s) at depth. However, these kinematic solutions generally provide no insight into the physics driving the fault slip or information about why the involved fault(s) slipped that much (or that little). In other words, these kinematic solutions may lack information about the physical dynamics of earthquake rupture that will be most helpful in forecasting future events. To help address this issue, some researchers use computer codes to numerically simulate earthquakes and construct dynamic, spontaneous rupture (hereafter called “spontaneous rupture”) solutions. For these types of numerical simulations, rather than prescribing the slip function at each location on the fault(s), just the friction constitutive properties and initial stress conditions are prescribed. The subsequent stresses and fault slip spontaneously evolve over time as part of the elasto-dynamic solution. Therefore, spontaneous rupture computer simulations of earthquakes allow us to include everything that we know, or think that we know, about earthquake dynamics and to test these ideas against earthquake observations

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Rapidly-Dissolvable Microneedle Patches Via a Highly Scalable and Reproducible Soft Lithography Approach

    Get PDF
    Microneedle devices for transdermal drug delivery have recently become an attractive method to overcome the diffusion-limiting epidermis and effectively transport therapeutics to the body. Here, we demonstrate the fabrication of highly reproducible and completely dissolvable polymer microneedles on flexible water-soluble substrates. These biocompatible microneedles (made by using a soft lithography process known as PRINT) showed efficacy in piercing both murine and human skin samples and delivering a fluorescent drug surrogate to the tissue

    The Gated X-ray Detector for the National Ignition Facility

    Get PDF
    Two new gated x-ray imaging cameras have recently been designed, constructed and delivered to the National Ignition Facility in Livermore, CA. These Gated X-ray Detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significant different from earlier generations of gated x-ray images due in parts to an innovative impendence matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution and no detectable impendence reflections
    corecore