62 research outputs found

    Millimeter-wave Point Sources from the 2500 Square Degree SPT-SZ Survey: Catalog and Population Statistics

    Get PDF
    We present a catalog of emissive point sources detected in the SPT-SZ survey, a contiguous 2530 square degree area surveyed with the South Pole Telescope (SPT) from 2008–2011 in three bands centered at 95, 150, and 220 GHz. The catalog contains 4845 sources measured at a significance of 4.5σ or greater in at least one band, corresponding to detections above approximately 9.8, 5.8, and 20.4 mJy in 95, 150, and 220 GHz, respectively. The spectral behavior in the SPT bands is used for source classification into two populations based on the underlying physical mechanisms of compact, emissive sources that are bright at millimeter wavelengths: synchrotron radiation from active galactic nuclei and thermal emission from dust. The latter population includes a component of high-redshift sources often referred to as submillimeter galaxies (SMGs). In the relatively bright flux ranges probed by the survey, these sources are expected to be magnified by strong gravitational lensing. The survey also contains sources consistent with protoclusters, groups of dusty galaxies at high redshift undergoing collapse. We cross-match the SPT-SZ catalog with external catalogs at radio, infrared, and X-ray wavelengths and identify available redshift information. The catalog splits into 3980 synchrotron-dominated and 865 dust-dominated sources, and we determine a list of 506 SMGs. Ten sources in the catalog are identified as stars. We calculate number counts for the full catalog, and synchrotron and dusty components, using a bootstrap method and compare our measured counts with models. This paper represents the third and final catalog of point sources in the SPT-SZ survey

    Millimeter-wave Point Sources from the 2500-square-degree SPT-SZ Survey: Catalog and Population Statistics

    Get PDF
    We present a catalog of emissive point sources detected in the SPT-SZ survey, a contiguous 2530-square-degree area surveyed with the South Pole Telescope (SPT) from 2008 - 2011 in three bands centered at 95, 150, and 220 GHz. The catalog contains 4845 sources measured at a significance of 4.5 sigma or greater in at least one band, corresponding to detections above approximately 9.8, 5.8, and 20.4 mJy in 95, 150, and 220 GHz, respectively. Spectral behavior in the SPT bands is used for source classification into two populations based on the underlying physical mechanisms of compact, emissive sources that are bright at millimeter wavelengths: synchrotron radiation from active galactic nuclei and thermal emission from dust. The latter population includes a component of high-redshift sources often referred to as submillimeter galaxies (SMGs). In the relatively bright flux ranges probed by the survey, these sources are expected to be magnified by strong gravitational lensing. The survey also contains sources consistent with protoclusters, groups of dusty galaxies at high redshift undergoing collapse. We cross-match the SPT-SZ catalog with external catalogs at radio, infrared, and X-ray wavelengths and identify available redshift information. The catalog splits into 3980 synchrotron-dominated and 865 dust-dominated sources and we determine a list of 506 SMGs. Ten sources in the catalog are identified as stars. We calculate number counts for the full catalog, and synchrotron and dusty components, using a bootstrap method and compare our measured counts with models. This paper represents the third and final catalog of point sources in the SPT-SZ survey.Comment: 43 pages, 19 figures, 7 tables. Submitted to AAS Journals 03/05/2020. 03/23/2020 co-author affiliation and acknowledgments update

    Measurement of the mean central optical depth of galaxy clusters via the pairwise kinematic Sunyaev-Zel'dovich effect with SPT-3G and des

    Get PDF
    We infer the mean optical depth of a sample of optically selected galaxy clusters from the Dark Energy Survey via the pairwise kinematic Sunyaev-Zel'dovich (KSZ) effect. The pairwise KSZ signal between pairs of clusters drawn from the Dark Energy Survey Year-3 cluster catalog is detected at 4.1σ in cosmic microwave background temperature maps from two years of observations with the SPT-3G camera on the South Pole Telescope. After cuts, there are 24,580 clusters in the ∼1,400 deg2 of the southern sky observed by both experiments. We infer the mean optical depth of the cluster sample with two techniques. The optical depth inferred from the pairwise KSZ signal is τ¯e=(2.97±0.73)×10-3, while that inferred from the thermal SZ signal is τ¯e=(2.51±0.55stat±0.15syst)×10-3. The two measures agree at 0.6σ. We perform a suite of systematic checks to test the robustness of the analysis

    A Measurement of the CMB Temperature Power Spectrum and Constraints on Cosmology from the SPT-3G 2018 TT/TE/EE Data Set

    Full text link
    We present a sample-variance-limited measurement of the temperature power spectrum (TTTT) of the cosmic microwave background (CMB) using observations of a  ⁣1500deg2\sim\! 1500 \,\mathrm{deg}^2 field made by SPT-3G in 2018. We report multifrequency power spectrum measurements at 95, 150, and 220GHz covering the angular multipole range 750<3000750 \leq \ell < 3000. We combine this TTTT measurement with the published polarization power spectrum measurements from the 2018 observing season and update their associated covariance matrix to complete the SPT-3G 2018 TT/TE/EETT/TE/EE data set. This is the first analysis to present cosmological constraints from SPT TTTT, TETE, and EEEE power spectrum measurements jointly. We blind the cosmological results and subject the data set to a series of consistency tests at the power spectrum and parameter level. We find excellent agreement between frequencies and spectrum types and our results are robust to the modeling of astrophysical foregrounds. We report results for Λ\LambdaCDM and a series of extensions, drawing on the following parameters: the amplitude of the gravitational lensing effect on primary power spectra ALA_\mathrm{L}, the effective number of neutrino species NeffN_{\mathrm{eff}}, the primordial helium abundance YPY_{\mathrm{P}}, and the baryon clumping factor due to primordial magnetic fields bb. We find that the SPT-3G 2018 T/TE/EET/TE/EE data are well fit by Λ\LambdaCDM with a probability-to-exceed of 15%15\%. For Λ\LambdaCDM, we constrain the expansion rate today to H0=68.3±1.5kms1Mpc1H_0 = 68.3 \pm 1.5\,\mathrm{km\,s^{-1}\,Mpc^{-1}} and the combined structure growth parameter to S8=0.797±0.042S_8 = 0.797 \pm 0.042. The SPT-based results are effectively independent of Planck, and the cosmological parameter constraints from either data set are within <1σ<1\,\sigma of each other. (abridged)Comment: 35 Pages, 17 Figures, 11 Table

    A measurement of the mean central optical depth of galaxy clusters via the pairwise kinematic Sunyaev-Zel'dovich effect with SPT-3G and DES

    Full text link
    We infer the mean optical depth of a sample of optically-selected galaxy clusters from the Dark Energy Survey (DES) via the pairwise kinematic Sunyaev-Zel'dovich (kSZ) effect. The pairwise kSZ signal between pairs of clusters drawn from the DES Year-3 cluster catalog is detected at 4.1σ4.1 \sigma in cosmic microwave background (CMB) temperature maps from two years of observations with the SPT-3G camera on the South Pole Telescope. After cuts, there are 24,580 clusters in the 1,400\sim 1,400 deg2^2 of the southern sky observed by both experiments. We infer the mean optical depth of the cluster sample with two techniques. The optical depth inferred from the pairwise kSZ signal is τˉe=(2.97±0.73)×103\bar{\tau}_e = (2.97 \pm 0.73) \times 10^{-3}, while that inferred from the thermal SZ signal is τˉe=(2.51±0.55stat±0.15syst)×103\bar{\tau}_e = (2.51 \pm 0.55^{\text{stat}} \pm 0.15^{\rm syst}) \times 10^{-3}. The two measures agree at 0.6σ0.6 \sigma. We perform a suite of systematic checks to test the robustness of the analysis

    A Measurement of Gravitational Lensing of the Cosmic Microwave Background Using SPT-3G 2018 Data

    Full text link
    We present a measurement of gravitational lensing over 1500 deg2^2 of the Southern sky using SPT-3G temperature data at 95 and 150 GHz taken in 2018. The lensing amplitude relative to a fiducial Planck 2018 Λ\LambdaCDM cosmology is found to be 1.020±0.0601.020\pm0.060, excluding instrumental and astrophysical systematic uncertainties. We conduct extensive systematic and null tests to check the robustness of the lensing measurements, and report a minimum-variance combined lensing power spectrum over angular multipoles of 50<L<200050<L<2000, which we use to constrain cosmological models. When analyzed alone and jointly with primary cosmic microwave background (CMB) spectra within the Λ\LambdaCDM model, our lensing amplitude measurements are consistent with measurements from SPT-SZ, SPTpol, ACT, and Planck. Incorporating loose priors on the baryon density and other parameters including uncertainties on a foreground bias template, we obtain a 1σ1\sigma constraint on σ8Ωm0.25=0.595±0.026\sigma_8 \Omega_{\rm m}^{0.25}=0.595 \pm 0.026 using the SPT-3G 2018 lensing data alone, where σ8\sigma_8 is a common measure of the amplitude of structure today and Ωm\Omega_{\rm m} is the matter density parameter. Combining SPT-3G 2018 lensing measurements with baryon acoustic oscillation (BAO) data, we derive parameter constraints of σ8=0.810±0.033\sigma_8 = 0.810 \pm 0.033, S8σ8(Ωm/0.3)0.5=0.836±0.039S_8 \equiv \sigma_8(\Omega_{\rm m}/0.3)^{0.5}= 0.836 \pm 0.039, and Hubble constant H0=68.81.6+1.3H_0 =68.8^{+1.3}_{-1.6} km s1^{-1} Mpc1^{-1}. Using CMB anisotropy and lensing measurements from SPT-3G only, we provide independent constraints on the spatial curvature of ΩK=0.0140.026+0.023\Omega_{K} = 0.014^{+0.023}_{-0.026} (95% C.L.) and the dark energy density of ΩΛ=0.7220.026+0.031\Omega_\Lambda = 0.722^{+0.031}_{-0.026} (68% C.L.). When combining SPT-3G lensing data with SPT-3G CMB anisotropy and BAO data, we find an upper limit on the sum of the neutrino masses of mν<0.30\sum m_{\nu}< 0.30 eV (95% C.L.)

    A measurement of the CMB temperature power spectrum and constraints on cosmology from the SPT-3G 2018 TT/TE/EE Data Set

    Get PDF
    We present a sample-variance-limited measurement of the temperature power spectrum (TTTT) of the cosmic microwave background (CMB) using observations of a  ⁣1500deg2\sim\! 1500 \,\mathrm{deg}^2 field made by SPT-3G in 2018. We report multifrequency power spectrum measurements at 95, 150, and 220GHz covering the angular multipole range 750<3000750 \leq \ell < 3000. We combine this TTTT measurement with the published polarization power spectrum measurements from the 2018 observing season and update their associated covariance matrix to complete the SPT-3G 2018 TT/TE/EETT/TE/EE data set. This is the first analysis to present cosmological constraints from SPT TTTT, TETE, and EEEE power spectrum measurements jointly. We blind the cosmological results and subject the data set to a series of consistency tests at the power spectrum and parameter level. We find excellent agreement between frequencies and spectrum types and our results are robust to the modeling of astrophysical foregrounds. We report results for Λ\LambdaCDM and a series of extensions, drawing on the following parameters: the amplitude of the gravitational lensing effect on primary power spectra ALA_\mathrm{L}, the effective number of neutrino species NeffN_{\mathrm{eff}}, the primordial helium abundance YPY_{\mathrm{P}}, and the baryon clumping factor due to primordial magnetic fields bb. We find that the SPT-3G 2018 T/TE/EET/TE/EE data are well fit by Λ\LambdaCDM with a probability-to-exceed of 15%15\%. For Λ\LambdaCDM, we constrain the expansion rate today to H0=68.3±1.5kms1Mpc1H_0 = 68.3 \pm 1.5\,\mathrm{km\,s^{-1}\,Mpc^{-1}} and the combined structure growth parameter to S8=0.797±0.042S_8 = 0.797 \pm 0.042. The SPT-based results are effectively independent of Planck, and the cosmological parameter constraints from either data set are within <1σ<1\,\sigma of each other. (abridged)..

    Performance and characterization of the SPT-3G digital frequency-domain multiplexed readout system using an improved noise and crosstalk model

    Get PDF
    The third generation South Pole Telescope camera (SPT-3G) improves upon its predecessor (SPTpol) by an order of magnitude increase in detectors on the focal plane. The technology used to read out and control these detectors, digital frequency-domain multiplexing (DfMUX), is conceptually the same as used for SPTpol, but extended to accommodate more detectors. A nearly 5x expansion in the readout operating bandwidth has enabled the use of this large focal plane, and SPT-3G performance meets the forecasting targets relevant to its science objectives. However, the electrical dynamics of the higher-bandwidth readout differ from predictions based on models of the SPTpol system. To address this, we present an updated derivation for electrical crosstalk in higher-bandwidth DfMUX systems, and identify two previously uncharacterized contributions to readout noise. The updated crosstalk and noise models successfully describe the measured crosstalk and readout noise performance of SPT-3G, and suggest improvements to the readout system for future experiments using DfMUX, such as the LiteBIRD space telescope
    corecore