8,327 research outputs found

    Solidification in soft-core fluids: disordered solids from fast solidification fronts

    Get PDF
    Using dynamical density functional theory we calculate the speed of solidification fronts advancing into a quenched two-dimensional model fluid of soft-core particles. We find that solidification fronts can advance via two different mechanisms, depending on the depth of the quench. For shallow quenches, the front propagation is via a nonlinear mechanism. For deep quenches, front propagation is governed by a linear mechanism and in this regime we are able to determine the front speed via a marginal stability analysis. We find that the density modulations generated behind the advancing front have a characteristic scale that differs from the wavelength of the density modulation in thermodynamic equilibrium, i.e., the spacing between the crystal planes in an equilibrium crystal. This leads to the subsequent development of disorder in the solids that are formed. For the one-component fluid, the particles are able to rearrange to form a well-ordered crystal, with few defects. However, solidification fronts in a binary mixture exhibiting crystalline phases with square and hexagonal ordering generate solids that are unable to rearrange after the passage of the solidification front and a significant amount of disorder remains in the system.Comment: 18 pages, 14 fig

    Criticality and phase separation in a two-dimensional binary colloidal fluid induced by the solvent critical behavior

    Get PDF
    We present an experimental and theoretical study of the phase behavior of a binary mixture of colloids with opposite adsorption preferences in a critical solvent. As a result of the attractive and repulsive critical Casimir forces, the critical fluctuations of the solvent lead to a further critical point in the colloidal system, i.e. to a critical colloidal-liquid--colloidal-liquid demixing phase transition which is controlled by the solvent temperature. Our experimental findings are in good agreement with calculations based on a simple approximation for the free energy of the system.Comment: 5 pages, 5 figures, to be published in Europhysics Letter

    Mean-field dynamical density functional theory

    Full text link
    We examine the out-of-equilibrium dynamical evolution of density profiles of ultrasoft particles under time-varying external confining potentials in three spatial dimensions. The theoretical formalism employed is the dynamical density functional theory (DDFT) of Marini Bettolo Marconi and Tarazona [J. Chem. Phys. {\bf 110}, 8032 (1999)], supplied by an equilibrium excess free energy functional that is essentially exact. We complement our theoretical analysis by carrying out extensive Brownian Dynamics simulations. We find excellent agreement between theory and simulations for the whole time evolution of density profiles, demonstrating thereby the validity of the DDFT when an accurate equilibrium free energy functional is employed.Comment: 8 pagers, 4 figure

    Structure-activity relationships in nitrosamine carcinogenesis.

    Get PDF
    Statistically significant correlations have been demonstrated between carcinogenic activity, toxicity and number of carbons per molecule for an extensive set of nitrosamines. Such correlations, involving only bulk molecular properties indicate that the chemical nature of the alkyl substituents need not be the sole determinants of carcinogenic activity. These structure-activity relationships can be used to estimate carcinogenic activity with some degree of confidence

    Phase separation in fluids exposed to spatially periodic external fields

    Full text link
    We consider the liquid-vapor type phase transition for fluids confined within spatially periodic external fields. For a fluid in d=3 dimensions, the periodic field induces an additional phase, characterized by large density modulations along the field direction. At the triple point, all three phases (modulated, vapor, and liquid) coexist. At temperatures slightly above the triple point and for low (high) values of the chemical potential, two-phase coexistence between the modulated phase and the vapor (liquid) is observed. We study this phenomenon using computer simulations and mean-field theory for the Ising model. The theory shows that, in order for the modulated phase to arise, the field wavelength must exceed a threshold value. We also find an extremely low tension of the interface between the modulated phase and the vapor/liquid phases. The tension is of the order 10^{-4} kB T per squared lattice spacing, where kB is the Boltzmann constant, and T the temperature. In order to detect such low tensions, a new simulation method is proposed. We also consider the case of d=2 dimensions. The modulated phase then does not survive, leading to a radically different phase diagram.Comment: 11 pages, 14 figure

    Morphogenetic Theory and the Constructivist Institutionalist Challenge

    Get PDF
    This article engages with two meta-theoretical approaches to social analysis, ‘morphogenetic theory’ and ‘constructivist institutionalism’, and specifically explores how the former fares under the critical scrutiny of the latter. The key proponent of constructivist institutionalism, Colin Hay, has offered two detailed critiques of morphogenesis that criticise its position on the foundational sociological issues of structure-agency and material-ideational. Although Hay’s critiques are largely rejected in an overall defence of the morphogenetic approach, the process of engagement is seen to be particularly useful for morphogenetic theory because it allows a number of important clarifications to be made and it also opens up space for theoretical development. In the course of this debate, accessible introductions are given to both theories, and the similarities and differences between them are outlined, providing clarity to both. Therefore, although this article ultimately operates as a defence of morphogenetic theory, especially in the form proposed by Margaret Archer and Douglas Porpora, it finds a great deal of fruitful discussion in the constructivist institutionalist challenge

    Modelling the evaporation of nanoparticle suspensions from heterogeneous surfaces

    Get PDF
    We present a Monte Carlo (MC) grid-based model for the drying of drops of a nanoparticle suspension upon a heterogeneous surface. The model consists of a generalised lattice-gas in which the interaction parameters in the Hamiltonian can be varied to model different properties of the materials involved. We show how to choose correctly the interactions, to minimise the effects of the underlying grid so that hemispherical droplets form. We also include the effects of surface roughness to examine the effects of contact-line pinning on the dynamics. When there is a `lid' above the system, which prevents evaporation, equilibrium drops form on the surface, which we use to determine the contact angle and how it varies as the parameters of the model are changed. This enables us to relate the interaction parameters to the materials used in applications. The model has also been applied to drying on heterogeneous surfaces, in particular to the case where the suspension is deposited on a surface consisting of a pair of hydrophilic conducting metal surfaces that are either side of a band of hydrophobic insulating polymer. This situation occurs when using inkjet printing to manufacture electrical connections between the metallic parts of the surface. The process is not always without problems, since the liquid can dewet from the hydrophobic part of the surface, breaking the bridge before the drying process is complete. The MC model reproduces the observed dewetting, allowing the parameters to be varied so that the conditions for the best connection can be established. We show that if the hydrophobic portion of the surface is located at a step below the height of the neighbouring metal, the chance of dewetting of the liquid during the drying process is significantly reduced.Comment: 14 pages, 14 figure

    Polymorphisms in the circadian expressed genes PER3 and ARNTL2 are associated with diurnal preference and GNβ3 with sleep measures

    Get PDF
    Sleep and circadian rhythms are intrinsically linked, with several sleep traits, including sleep timing and duration, influenced by both sleep homeostasis and the circadian phase. Genetic variation in several circadian genes has been associated with diurnal preference (preference in timing of sleep), although there has been limited research on whether they are associated with other sleep measurements. We investigated whether these genetic variations were associated with diurnal preference (Morningness-Eveningness Questionnaire) and various sleep measures, including: the global Pittsburgh Sleep Quality index score; sleep duration; and sleep latency and sleep quality. We genotyped 10 polymorphisms in genes with circadian expression in participants from the G1219 sample (n = 966), a British longitudinal population sample of young adults. We conducted linear regressions using dominant, additive and recessive models of inheritance to test for associations between these polymorphisms and the sleep measures. We found a significant association between diurnal preference and a polymorphism in period homologue 3 (PER3) (P < 0.005, recessive model) and a novel nominally significant association between diurnal preference and a polymorphism in aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) (P < 0.05, additive model). We found that a polymorphism in guanine nucleotide binding protein beta 3 (GNβ3) was associated significantly with global sleep quality (P < 0.005, recessive model), and that a rare polymorphism in period homologue 2 (PER2) was associated significantly with both sleep duration and quality (P < 0.0005, recessive model). These findings suggest that genes with circadian expression may play a role in regulating both the circadian clock and sleep homeostasis, and highlight the importance of further studies aimed at dissecting the specific roles that circadian genes play in these two interrelated but unique behaviours

    Geriatric screening in first opinion practice: results from 45 dogs

    Get PDF
    Objectives To evaluate and report the results of screening geriatric dogs in a first opinion practice. Methods A prospective health screen of dogs over nine-years-old involving history taking, physical examination and urinalysis. Results At least one previously unrecognised problem was identified in 80% of 45 dogs and 353 findings (mean 7·8 per dog) were recorded. Owners often failed to recognise and report serious signs of age-related disease. However, they most often reported increased sleeping (31%), loss of hearing (29%) or sight (20%), stiffness or lameness (22%) and “slowing down” (20%). Increased lens opacity (64%), increased thirst (58%), pain (24%), increased frequency of urination (24%), signs of osteoarthritis (24%) and dental disease (22%) were most frequently identified at the time of consultation. Potentially, life-threatening findings included respiratory distress, palpable abdominal masses and metastatic lung disease. Screening resulted in 29 further diagnostic procedures, including 10 dental procedures, seven medical treatments, two surgical procedures and euthanasia of two dogs. Clinical Significance Screening elderly dogs identified unrecognised and unreported health risk factors resulting in lifestyle modification and ongoing monitoring, as well as signs of age-related diseases resulting in diagnostic investigations, early diagnoses and surgical and medical interventions to improve quality of life
    corecore