11,843 research outputs found

    Antenna Technology for QUASAT application

    Get PDF
    A hybrid growth version of the advanced Sunflower, or precision deployable, antenna was adopted as the configuration proposed for the QUASAT very long baseline interferometry mission. The antenna consists of rigid panels of graphite-epoxy facesheets covering aluminum honeycomb sandwich. The six main folding panels are hinged to a cantilevered support ring attached to the periphery of the center section. Six pairs of intermediate panels are located between these panels and are hinged to each other and to the main panels. The flight configuration, antenna weight, a mass properties, frequency, and contour tolerance are discussed. The advantages of the solid antenna surface cover an all-mesh contour are examined

    Microscopic theory of solvent mediated long range forces: influence of wetting

    Get PDF
    We show that a general density functional approach for calculating the force between two big particles immersed in a solvent of smaller ones can describe systems that exhibit fluid-fluid phase separation: the theory captures effects of strong adsorption (wetting) and of critical fluctuations in the solvent. We illustrate the approach for the Gaussian core model, a simple model of a polymer mixture in solution and find extremely attractive, long ranged solvent mediated potentials between the big particles for state points lying close to the binodal, on the side where the solvent is poor in the species which is favoured by the big particles.Comment: 7 pages, 3 figures, submitted to Europhysics Letter

    Improved analytic longitudinal response analysis for axisymmetric launch vehicles. Volume I - Linear analytic model

    Get PDF
    Improved analytic longitudinal response analysis for axisymmetric launch vehicles - linear mode

    Dynamical Models of Extreme Rolling of Vessels in Head Waves

    Get PDF
    Rolling of a ship is a swinging motion around its length axis. In particular vessels transporting containers may show large amplitude roll when sailing in seas with large head waves. The dynamics of the ship is such that rolling interacts with heave being the motion of the mass point of the ship in vertical direction. Due to the shape of the hull of the vessel its heave is influenced considerably by the phase of the wave as it passes the ship. The interaction of heave and roll can be modeled by a mass-spring-pendulum system. The effect of waves is then included in the system by a periodic forcing term. In first instance the damping of the spring can be taken infinitely large making the system a pendulum with an in vertical direction periodically moving suspension. For a small angular deflection the roll motion is then described by the Mathieu equation containing a periodic forcing. If the period of the solution of the equation without forcing is about twice the period of the forcing then the oscillation gets unstable and the amplitude starts to grow. After describing this model we turn to situation that the ship is not anymore statically fixed at the fluctuating water level. It may move up and down showing a motion modeled by a damped spring. One step further we also allow for pitch, a swinging motion around a horizontal axis perpendicular to the ship. It is recommended to investigate the way waves may directly drive this mode and to determine the amount of energy that flows along this path towards the roll mode. Since at sea waves are a superposition of waves with different wavelengths, we also pay attention to the properties of such a type of forcing containing stochastic elements. It is recommended that as a measure for the occurrence of large deflections of the roll angle one should take the expected time for which a given large deflection may occur instead of the mean amplitude of the deflection

    Hypothalamic gene expression during voluntary hypophagia in the Sprague-Dawley rat on withdrawal of the palatable liquid diet, Ensure

    Get PDF
    Copyright © 2014 Elsevier Inc. All rights reserved.Peer reviewedPostprin

    Phase II study of tight glycaemic control in COPD patients with exacerbations admitted to the acute medical unit.

    Get PDF
    BACKGROUND: Hyperglycaemia is associated with poor outcomes from exacerbations of chronic obstructive pulmonary disease (COPD). Glycaemic control could improve outcomes by reducing infection, inflammation and myopathy. Most patients with COPD are managed on the acute medical unit (AMU) outside intensive care (ICU). OBJECTIVE: To determine the feasibility, safety and efficacy of tight glycaemic control in patients on an AMU. DESIGN: Prospective, non-randomised, phase II, single-arm study of tight glycaemic control in COPD patients with acute exacerbations and hyperglycaemia admitted to the AMU. Participants received intravenous, then subcutaneous, insulin to control blood glucose to 4.4-6.5 mmol/l. Tight glycaemic control was evaluated: feasibility, protocol adherence; acceptability, patient questionnaire; safety, frequency of hypoglycaemia (capillary blood glucose (CBG) <2.2 mmol/l and 2.2-3.3 mmol/l); efficacy, median CBG, fasting CBG, proportion of measurements/time in target range, glycaemic variability. RESULTS: were compared with 25 published ICU studies. Results 20 patients (10 females, age 71 ± 9 years; forced expiratory volume in 1 s: 41 ± 16% predicted) were recruited. Tight glycaemic control was feasible (78% CBG measurements and 89% of insulin-dose adjustments were adherent to protocol) and acceptable to patients. 0.2% CBG measurements were <2.2 mmol/l and 4.1% measurements 2.2-3.3 mmol/l. The study CBG and proportion of measurements/time in target range were similar to that of ICU studies, whereas the fasting CBG was lower, and the glycaemic variability was greater. CONCLUSIONS: Tight glycaemic control is feasible and has similar safety and efficacy on AMU to ICU. However, as more recent ICU studies have shown no benefit and possible harm from tight glycaemic control, alternative strategies for blood glucose control in COPD exacerbations should now be explored. Trial registration number ISRCTN: 42412334. http://Clinical.Trials.gov NCT00764556
    corecore