662 research outputs found

    Colonic Protein Fermentation and Promotion of Colon Carcinogenesis by Thermolyzed Casein

    Get PDF
    Thermolyzed casein is known to promote the growth of aberrant crypt foci (ACF) and colon cancer when it is fed to rats that have been initiated with azoxymethane. We speculated that the promotion was a consequence of increased colonic protein fermentation (i.e., that the thermolysis of the casein decreases its digestibility, increases the amount of protein reaching the colon, and increases colonic protein fermentation and that the potentially toxic products of this fermentation promote colon carcinogenesis). We found that the thermolysis of casein reduces its digestibility and increases colonic protein fermentation, as assessed by fecal ammonium and urinary phenol, cresol, and indol-3-ol. Thermolysis of two other proteins, soy and egg white protein, also increases colonic protein fermentation with increased fecal ammonia and urinary phenols, and thermolysis of all three proteins increases the levels of ammonia and butyric, valeric, and i-valeric acids in the cecal contents. We found, however, that the increased protein fermentation observed with thermolysis is not associated with pro-motion of colon carcinogenesis. With casein, the kinetics of protein fermentation with increasing thermolysis time are clearly different from the kinetics of promotion of ACF growth. The formation of the fermentation products was highest when the protein was thermolyzed for one hour, whereas promotion was highest for protein that had been thermolyzed for two or more hours. With soy and egg white, thermolysis increased colonic protein fermentation but did not promote colon carcinogenesis. Thus, although thermolysis of dietary casein increases colonic protein fermentation, products of this fermentation do not appear to be responsible for the promotion of colon carcinogenesis. Indeed, the results suggest that protein fermentation products do not play an important role in colon cancer promotion

    Cyclin D(1) expression during rat mammary tumor development and its potential role in the resistance of the Copenhagen rat

    Get PDF
    BACKGROUND: Resistance to mammary tumorigenesis in Copenhagen rats is associated with loss of early preneoplastic lesions known as intraductal proliferations. The cause of this disappearance, however, is unknown. RESULTS: There were no differences in the numbers of lesions in mammary whole-mounts prepared from Copenhagen or Wistar-Furth rats at 20 or 30 days after N-methyl-N-nitrosourea treatment, but at 37 days there were significantly fewer lesions in Copenhagen glands. Furthermore, lesions in Copenhagen glands were exclusively intraductal proliferations, whereas in Wistar-Furth glands more advanced lesions were also present. Immunohistochemical staining showed frequent cyclin D(1) overexpression in Wistar-Furth lesions at 37 days, but not in Copenhagen lesions. There were, however, no differences in p16(INK4a) protein expression, bromodeoxyuridine labeling and apoptotic indices, or mast cell infiltration between Copenhagen and Wistar-Furth lesions at any time. CONCLUSIONS: Overexpression of cyclin D(1) in preneoplastic lesions may be important in the development of mammary tumors in susceptible rats, although this overexpression does not appear to cause significant changes in cell kinetics. Furthermore, the low levels of cyclin D(1) expression in Copenhagen intraductal proliferations may play a role in the resistance of these rats to mammary tumorigenesis

    Polymorphisms in the circadian expressed genes PER3 and ARNTL2 are associated with diurnal preference and GNβ3 with sleep measures

    Get PDF
    Sleep and circadian rhythms are intrinsically linked, with several sleep traits, including sleep timing and duration, influenced by both sleep homeostasis and the circadian phase. Genetic variation in several circadian genes has been associated with diurnal preference (preference in timing of sleep), although there has been limited research on whether they are associated with other sleep measurements. We investigated whether these genetic variations were associated with diurnal preference (Morningness-Eveningness Questionnaire) and various sleep measures, including: the global Pittsburgh Sleep Quality index score; sleep duration; and sleep latency and sleep quality. We genotyped 10 polymorphisms in genes with circadian expression in participants from the G1219 sample (n = 966), a British longitudinal population sample of young adults. We conducted linear regressions using dominant, additive and recessive models of inheritance to test for associations between these polymorphisms and the sleep measures. We found a significant association between diurnal preference and a polymorphism in period homologue 3 (PER3) (P < 0.005, recessive model) and a novel nominally significant association between diurnal preference and a polymorphism in aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) (P < 0.05, additive model). We found that a polymorphism in guanine nucleotide binding protein beta 3 (GNβ3) was associated significantly with global sleep quality (P < 0.005, recessive model), and that a rare polymorphism in period homologue 2 (PER2) was associated significantly with both sleep duration and quality (P < 0.0005, recessive model). These findings suggest that genes with circadian expression may play a role in regulating both the circadian clock and sleep homeostasis, and highlight the importance of further studies aimed at dissecting the specific roles that circadian genes play in these two interrelated but unique behaviours

    Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption

    Get PDF
    Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal and regional pattern of widespread gene network responses involving neuroinflammatory and neuroplasticity related genes as contributing to physiological and behavioral responses to chronic ethanol

    Dehydroalanine and Lysinoalanine in Thermolyzed Casein do not Promote Colon Cancer in the Rat

    Get PDF
    Thermolysis of proteins produces xenobiotic amino-acids such as the potentially toxic lysinoalanine, and the alkylating agent, dehydro¬alanine, which have been considered possible health hazards. We observed that thermolysed casein promoted aberrant crypt foci (ACF) and colon cancer growth in rats initiated with azoxymethane and speculated that promotion might be due to the formation of these compounds. To test this notion we first measured the concentration of the modified amino acids as a function of thermolysis time. The concentration of dehydroalanine in the casein paralleled the degree of promotion, that of lysinoalanine did not. We then tested diets containing foods with high levels of dehydroalanine (thermolysed sodium-caseinate, cooked Swiss cheese) for their effect on ACF promotion. They decreased the number and/or size of ACF significantly, indicating that dehydroalanine did not promote, but protected rats against colon carcinogenesis. These results do not support the notion that lysinoalanine or dehydroalanine are a hazard with respect to colon carcinogenicity

    The interplay between extrinsic and intrinsic factors in determining migration decisions in brown trout (Salmo trutta): An experimental study

    Get PDF
    Many species are capable of facultative migration, but the relative roles of extrinsic versus intrinsic factors in generating diverse migratory tactics remain unclear. Here we explore the proximate drivers of facultative migration in brown trout in an experimental laboratory setting. The effects of reduced food, as a putative environmental cue, were examined in two populations: one that exhibits high rates of anadromy (sea-migration) in nature, and one that does not exhibit anadromy in nature. Juveniles derived from wild-caught parents were reared for two years under four environmental treatments: low food in years 1 and 2 (Low-Low); high food in years 1 and 2 (High-High), low food in year 1 and high in year 2 (Low-High), and vice versa (High-Low). Food restriction had a significant effect on migratory tactics, with the frequency of smolts (juveniles choosing migration) highest in the Low-Low treatment in both populations. No individuals became smolts in the High-High treatment, and intermediate smolting rates were observed in the Low-High and High-Low treatments. Higher overall smolting rates in the naturally anadromous population suggested an inherited component to anadromy/migration decisions, but both populations showed variability in migratory tactics. Importantly, some fish from the naturally non-anadromous population became smolts in the experiment, implying the capacity for migration was lying ‘dormant’, but they exhibited lower hypo-osmoregulatory function than smolts from the naturally anadromous population. Tactic frequencies in the naturally anadromous population were more affected by food in the 2nd year, while food in the 1st year appeared more important for the naturally non-anadromous population. Migratory tactics were also related to sex, but underpinned in both sexes by growth in key periods, size and energetic state. Collectively these results reveal how migration decisions are shaped by a complex interplay between extrinsic and intrinsic factors, informing our ability to predict how facultatively migratory populations will respond to environmental change

    17β-Estradiol Inhibits Phosphorylation of Stromal Interaction Molecule 1 (STIM1) Protein: IMPLICATION FOR STORE-OPERATED CALCIUM ENTRY AND CHRONIC LUNG DISEASES

    Get PDF
    Sex plays a significant role in the development of lung diseases including asthma, cancer, chronic bronchitis, and cystic fibrosis. In cystic fibrosis, 17β-estradiol (E2) may inhibit store-operated Ca2+ entry (SOCE) to impinge upon airway secretions, leaving females at greater risk of contracting lung infections. Stromal interaction molecule 1 (STIM1)-mediated SOCE is essential for cell homeostasis and regulates numerous processes including cell proliferation, smooth muscle contraction, and secretion. E2 can signal nongenomically to modulate Ca2+ signaling, but little is known of the underlying mechanisms. We found that E2 exposure inhibited STIM1 translocation in airway epithelia, preventing SOCE. This correlated with a decrease in STIM1-STIM1 FRET and STIM1 mobility in E2-exposed HEK293T cells co-expressing estrogen receptor α. We also examined the role of STIM1 phosphorylation in E2-mediated inhibition of STIM1 mobility. STIM1 is basally phosphorylated at serine 575, which is required for SOCE. Exposure to E2 significantly decreased STIM1 serine phosphorylation. Mutating serine 575 to an alanine blocked STIM1 phosphorylation, reduced basal STIM1 mobility, and rendered STIM1 insensitive to E2. These data indicate that E2 can signal nongenomically by inhibiting basal phosphorylation of STIM1, leading to a reduction in SOCE
    corecore