11 research outputs found

    The genomic landscape of juvenile myelomonocytic leukemia

    Get PDF
    Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm (MPN) of childhood with a poor prognosis. Mutations in NF1, NRAS, KRAS, PTPN11 and CBL occur in 85% of patients, yet there are currently no risk stratification algorithms capable of predicting which patients will be refractory to conventional treatment and therefore be candidates for experimental therapies. In addition, there have been few other molecular pathways identified aside from the Ras/MAPK pathway to serve as the basis for such novel therapeutic strategies. We therefore sought to genomically characterize serial samples from patients at diagnosis through relapse and transformation to acute myeloid leukemia in order to expand our knowledge of the mutational spectrum in JMML. We identified recurrent mutations in genes involved in signal transduction, gene splicing, the polycomb repressive complex 2 (PRC2) and transcription. Importantly, the number of somatic alterations present at diagnosis appears to be the major determinant of outcome

    Adaptation via pleiotropy and linkage: association mapping reveals a complex genetic architecture within the Eda locus.

    Get PDF
    Genomic mapping of the loci associated with phenotypic evolution has revealed genomic “hotspots,” or regions of the genome that control multiple phenotypic traits. This clustering of loci has important implications for the speed and maintenance of adaptation and could be due to pleiotropic effects of a single mutation or tight genetic linkage of multiple causative mutations affecting different traits. The threespine stickleback (Gasterosteus aculeatus) is a powerful model for the study of adaptive evolution because the marine ecotype has repeatedly adapted to freshwater environments across the northern hemisphere in the last 12,000 years. Freshwater ecotypes have repeatedly fixed a 16 kilobase haplotype on chromosome IV that contains Ectodysplasin (Eda), a gene known to affect multiple traits, including defensive armor plates, lateral line sensory hair cells, and schooling behavior. Many additional traits have previously been mapped to a larger region of chromosome IV that encompasses the Eda freshwater haplotype. To identify which of these traits specifically map to this adaptive haplotype, we made crosses of rare marine fish heterozygous for the freshwater haplotype in an otherwise marine genetic background. Further, we performed fine-scale association mapping in a fully interbreeding, polymorphic population of freshwater stickleback to disentangle the effects of pleiotropy and linkage on the phenotypes affected by this haplotype. Although we find evidence that linked mutations have small effects on a few phenotypes, a small 1.4-kb region within the first intron of Eda has large effects on three phenotypic traits: lateral plate count, and both the number and patterning of the posterior lateral line neuromasts. Thus, the Eda haplotype is a hotspot of adaptation in stickleback due to both a small, pleiotropic region affecting multiple traits as well as multiple linked mutations affecting additional traits

    A re-consideration of the taxonomic status of Nebria lacustris Casey (Coleoptera, Carabidae, Nebriini) based on multiple datasets – a single species or a species complex?

    Get PDF
    This study gathered evidence from principal component analysis (PCA) of morphometric data and molecular analyses of nucleotide sequence data for four nuclear genes (28S, TpI, CAD1, and Wg) and two mitochondrial genes (COI and 16S), using parsimony, maximum likelihood, and Bayesian methods. This evidence was combined with morphological and chorological data to re-evaluate the taxonomic status of Nebria lacustris Casey sensu lato. PCA demonstrated that both body size and one conspicuous aspect of pronotal shape vary simultaneously with elevation, latitude, and longitude and served to distinguish populations from the southern Appalachian highlands, south of the French Broad, from all other populations. Molecular analyses revealed surprisingly low overall genetic diversity within N. lacustris sensu lato, with only 0.39% of 4605 bp varied in the concatenated dataset. Evaluation of patterns observed in morphological and genetic variation and distribution led to the following taxonomic conclusions: (1) Nebria lacustris Casey and Nebria bellorum Kavanaugh should be considered distinct species, which is a NEW STATUS for N. bellorum. (2) No other distinct taxonomic subunits could be distinguished with the evidence at hand, but samples from northeastern Iowa, in part of the region known as the “Driftless Zone”, have unique genetic markers for two genes that hint at descent from a local population surviving at least the last glacial advance. (3) No morphometric or molecular evidence supports taxonomic distinction between lowland populations on the shores of Lake Champlain and upland populations in the adjacent Green Mountains of Vermont, despite evident size and pronotal shape differences between many of their members

    Phosphorus limitation does not drive loss of bony lateral plates in freshwater stickleback (Gasterosteus aculeatus)

    No full text
    Connecting the selective forces that drive the evolution of phenotypes to their underlying genotypes is key to understanding adaptation, but such connections are rarely tested experimentally. Threespine stickleback (Gasterosteus aculeatus) are a powerful model for such tests because genotypes that underlie putatively adaptive traits have been identified. For example, a regulatory mutation in the Ectodysplasin (Eda) gene causes a reduction in the number of bony armor plates, which occurs rapidly and repeatedly when marine sticklebacks invade freshwater. However, the source of selection on plate loss in freshwater is unknown. Here, we tested whether dietary reduction of phosphorus can account for selection on plate loss due to a growth advantage of low-plated fish in freshwater. We crossed marine fish heterozygous for the 16 kilobase freshwater Eda haplotype and compared the growth of offspring with different genotypes under contrasting levels of dietary phosphorus in both saltwater and freshwater. Eda genotype was not associated with growth differences in any treatment, or with mechanisms that could mitigate the impacts of phosphorus limitation, such as differential phosphorus deposition, phosphorus excretion, or intestine length. This study highlights the importance of experimentally testing the putative selective forces acting on phenotypes and their underlying genotypes in the wild

    Development of an allele-specific minimal residual disease assay for patients with juvenile myelomonocytic leukemia

    No full text
    Juvenile myelomonocytic leukemia is an aggressive and frequently lethal myeloproliferative disorder of childhood. Somatic mutations in NRAS, KRAS, or PTPN11 occur in 60% of cases. Monitoring disease status is difficult because of the lack of characteristic leukemic blasts at diagnosis. We designed a fluorescently based, allele-specific polymerase chain reaction assay called TaqMAMA to detect the most common RAS or PTPN11 mutations. We analyzed peripheral blood and/or bone marrow of 25 patients for levels of mutant alleles over time. Analysis of pre–hematopoietic stem-cell transplantation, samples revealed a broad distribution of the quantity of the mutant alleles. After hematopoietic stem-cell transplantation, the level of the mutant allele rose rapidly in patients who relapsed and correlated well with falling donor chimerism. Simultaneously analyzed peripheral blood and bone marrow samples demonstrate that blood can be monitored for residual disease. Importantly, these assays provide a sensitive strategy to evaluate molecular responses to new therapeutic strategies

    Mutations in CBL occur frequently in juvenile myelomonocytic leukemia

    No full text
    Juvenile myelomonocytic leukemia is an aggressive myeloproliferative disorder characterized by malignant transformation in the hematopoietic stem cell compartment with proliferation of differentiated progeny. Seventy-five percent of patients harbor mutations in the NF1, NRAS, KRAS, or PTPN11 genes, which encode components of Ras signaling networks. Using single nucleotide polymorphism arrays, we identified a region of 11q isodisomy that contains the CBL gene in several JMML samples, and subsequently identified CBL mutations in 27 of 159 JMML samples. Thirteen of these mutations alter codon Y371. In this report, we also demonstrate that CBL and RAS/PTPN11 mutations were mutually exclusive in these patients. Moreover, the exclusivity of CBL mutations with respect to other Ras pathway-associated mutations indicates that CBL may have a role in deregulating this key pathway in JMML

    The Genomic Landscape of Juvenile Myelomonocytic Leukemia

    No full text
    Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative neoplasm (MPN) of childhood with a poor prognosis. Mutations in NF1, NRAS, KRAS, PTPN11 and CBL occur in 85% of patients, yet there are currently no risk stratification algorithms capable of predicting which patients will be refractory to conventional treatment and therefore be candidates for experimental therapies. In addition, there have been few other molecular pathways identified aside from the Ras/MAPK pathway to serve as the basis for such novel therapeutic strategies. We therefore sought to genomically characterize serial samples from patients at diagnosis through relapse and transformation to acute myeloid leukemia in order to expand our knowledge of the mutational spectrum in JMML. We identified recurrent mutations in genes involved in signal transduction, gene splicing, the polycomb repressive complex 2 (PRC2) and transcription. Importantly, the number of somatic alterations present at diagnosis appears to be the major determinant of outcome

    Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia

    Get PDF
    CBL encodes a member of the Cbl family of proteins, which functions as an E3 ubiquitin ligase. We describe a dominant developmental disorder resulting from germline missense CBL mutations, which is characterized by impaired growth, developmental delay, cryptorchidism and a predisposition to juvenile myelomonocytic leukemia (JMML). Some individuals experienced spontaneous regression of their JMML but developed vasculitis later in life. Importantly, JMML specimens from affected children show loss of the normal CBL allele through acquired isodisomy. Consistent with these genetic data, the common p.371Y>H altered Cbl protein induces cytokine-independent growth and constitutive phosphorylation of ERK, AKT and S6 only in hematopoietic cells in which normal Cbl expression is reduced by RNA interference. We conclude that germline CBL mutations have developmental, tumorigenic and functional consequences that resemble disorders that are caused by hyperactive Ras/Raf/MEK/ERK signaling and include neurofibromatosis type 1, Noonan syndrome, Costello syndrome, cardiofaciocutaneous syndrome and Legius syndrome
    corecore