19 research outputs found

    Distribution of indium in the Ánimas - Chocaya - Siete Suyos District

    Get PDF
    The Ánimas - Chocaya - Siete Suyos district in SW Bolivia hosts a Bolivian-type polymetallic vein mineralization composed mostly of cassiterite, sphalerite, pyrite, galena, stannite, lead sulfosalts, tin sulfosalts and silver sulfosalts. In addition to base (Zn, Sn, Pb) and precious (Ag) metals, important concentrations of In have been described. Systematic EPMA analyses have revealed that the highest concentrations are found in an early generation of sphalerite (up to 9.66 wt% In) and in stannite (up to 4.11 wt% In). Although In-bearing sphalerites are relatively Fe-rich (mostly between 6.0 and 18.1 mol % FeS), the atomic concentrations of these two elements do not yield any correlation. In contrast, In is positively correlated with Cu mostly along a Cu/In = 1 proportion pointing to a (In3+ + Cu+ ) ¿ 2Zn2+ coupled substitution. A relatively high activity of Cu during the crystallization of In-rich sphalerite is also supported by exsolutions of chalcopyrite and stannite.Peer ReviewedPostprint (author's final draft

    The PoopĂł Polymetallic Epithermal Deposit, Bolivia: Mineralogy, Genetic Constraints, and Distribution of Critical Elements

    Get PDF
    The tin-rich polymetallic epithermal deposit of PoopĂł, of plausible Late Miocene age, is part of the Bolivian Tin Belt. As an epithermal low sulfidation mineralisation, it represents a typological end-member within the "family" of Bolivian tin deposits. The emplacement of the mineralisation was controlled by the regional fault zone that constitutes the geological border between the Bolivian Altiplano and the Eastern Andes Cordillera. In addition to Sn and Ag, its economic interest resides in its potential in critical elements as In, Ga and Ge. This paper provides the first systematic characterisation of the complex mineralogy and mineral chemistry of the PoopĂł deposit with the twofold aim of identifying the mineral carriers of critical elements and endeavouring to ascertain plausible metallogenic processes for the formation of this deposit, by means of a multi-methodological approach. The poor development of hydrothermal alteration assemblage, the abundance of sulphosalts and the replacement of löllingite and pyrrhotite by arsenopyrite and pyrite, respectively, indicate that this deposit is ascribed to the low-sulphidation subtype of epithermal deposits, with excursions into higher states of sulphidation. Additionally, the occurrence of pyrophyllite and topaz has been interpreted as the result of discrete pulses of high-sulphidation magmatic fluids. The ÎŽ34SVCDT range in sulphides (−5.9 to −2.8 ) is compatible either with: (i) hybrid sulphur sources (i.e., magmatic and sedimentary or metasedimentary); or (ii) a sole magmatic source involving magmas that derived from partial melting of sedimentary rocks or underwent crustal assimilation. In their overall contents in critical elements (In, Ga and Ge), the key minerals in the PoopĂł deposit, based on their abundance in the deposit and compositions, are rhodostannite, franckeite, cassiterite, stannite and, less importantly, teallite, sphalerite and jamesonite

    The PoopĂł polymetallic epithermal deposit, Bolivia: mineralogy, genetic constraints, and distribution of critical elements

    Get PDF
    The tin-rich polymetallic epithermal deposit of PoopĂł, of plausible Late Miocene age, is part of the Bolivian Tin Belt. As an epithermal low sulfidation mineralisation, it represents a typological end-member within the “family” of Bolivian tin deposits. The emplacement of the mineralisation was controlled by the regional fault zone that constitutes the geological border between the Bolivian Altiplano and the Eastern Andes Cordillera. In addition to Sn and Ag, its economic interest resides in its potential in critical elements as In, Ga and Ge. This paper provides the first systematic characterisation of the complex mineralogy and mineral chemistry of the PoopĂł deposit with the twofold aim of identifying the mineral carriers of critical elements and endeavouring to ascertain plausible metallogenic processes for the formation of this deposit, by means of a multi-methodological approach. The poor development of hydrothermal alteration assemblage, the abundance of sulphosalts and the replacement of löllingite and pyrrhotite by arsenopyrite and pyrite, respectively, indicate that this deposit is ascribed to the low-sulphidation subtype of epithermal deposits, with excursions into higher states of sulphidation. Additionally, the occurrence of pyrophyllite and topaz has been interpreted as the result of discrete pulses of high-sulphidation magmatic fluids. The d34SVCDT range in sulphides (-5.9 to -2.8‰) is compatible either with: (i) hybrid sulphur sources (i.e., magmatic and sedimentary or metasedimentary); or (ii) a sole magmatic source involving magmas that derived from partial melting of sedimentary rocks or underwent crustal assimilation. In their overall contents in critical elements (In, Ga and Ge), the key minerals in the PoopĂł deposit, based on their abundance in the deposit and compositions, are rhodostannite, franckeite, cassiterite, stannite and, less importantly, teallite, sphalerite and jamesonite.Peer ReviewedPostprint (published version

    Indium mineralization in the volcanic dome-hosted Ánimas–Chocaya–Siete Suyos polymetallic deposit, Potosí, Bolivia

    Get PDF
    A volcanic dome complex of Miocene age hosts the In-bearing Ánimas–Chocaya–Siete Suyos district in SW Bolivia. Ore mineralization occurs as banded and massive infillings in subvertical, NE-SW striking veins. In this article, a detailed petrographic study is combined with in situ mineral geochemistry determinations in ore from the Arturo, Chorro and Diez veins in the Siete Suyos mine, the Ánimas, Burton, Colorada, and Rosario veins in the Ánimas mine and the Nueva vein in the Chocaya mine. A three-stage paragenetic sequence is roughly determined for all of them, and includes (1) an early low-sulfidation stage that is dominated by cassiterite, pyrrhotite, arsenopyrite, and high-Fe sphalerite (FeS > 21 mol. %); (2) a second intermediate-sulfidation stage dominated by pyrite + marcasite ± intermediate product, sphalerite (FeS < 21 mol. %), stannite, and local famatinite; and, (3) a late intermediate-sulfidation stage dominated by galena and Ag-Pb-Sn sulfosalts. Electron-probe microanalyses reveal high indium enrichment in stage-2 sphalerite (up to 9.66 wt.% In) and stannite (up to 4.11 wt.% In), and a moderate enrichment in rare wurtzite (up to 1.61 wt.% In), stage-1 sphalerite (0.35 wt.% In), cassiterite (up to 0.25 wt.% In2O3), and ramdohrite (up to 0.24 wt.% In). Therefore, the main indium mineralization in the district can be associated to the second, intermediate-sulfidation stage, chiefly in those veins in which sphalerite and stannite are more abundant. Atomic concentrations of In and Cu in sphalerite yield a positive correlation at Cu/In = 1 that agrees with a (Cu+ + In3+) Âż 2Zn2+ coupled substitution. The availability of Cu in the mineralizing fluids during the crystallization of sphalerite is, in consequence, essential for the incorporation of indium in its crystal lattice and would control the distribution of indium enrichment at different scales. The highest concentrations of indium in sphalerite, which is found in the Diez vein in the Siete Suyos mine, occur in crustiform bands of sphalerite with local “chalcopyrite disease” texture, which has not been observed in the other studied veins. In stannite, the atomic concentrations of In are negatively correlated with those of Cu and Sn at Cu + In = 2 and Sn + In = 1. Thus, atomic proportions and correlations suggest the contextualization of the main indium mineralization in the sphalerite–stannite–roquesite pseudoternary system.Peer ReviewedPostprint (published version

    The PoopĂł polymetallic epithermal deposit, Bolivia: mineralogy, genetic constraints, and distribution of critical elements

    No full text
    The tin-rich polymetallic epithermal deposit of PoopĂł, of plausible Late Miocene age, is part of the Bolivian Tin Belt. As an epithermal low sulfidation mineralisation, it represents a typological end-member within the “family” of Bolivian tin deposits. The emplacement of the mineralisation was controlled by the regional fault zone that constitutes the geological border between the Bolivian Altiplano and the Eastern Andes Cordillera. In addition to Sn and Ag, its economic interest resides in its potential in critical elements as In, Ga and Ge. This paper provides the first systematic characterisation of the complex mineralogy and mineral chemistry of the PoopĂł deposit with the twofold aim of identifying the mineral carriers of critical elements and endeavouring to ascertain plausible metallogenic processes for the formation of this deposit, by means of a multi-methodological approach. The poor development of hydrothermal alteration assemblage, the abundance of sulphosalts and the replacement of löllingite and pyrrhotite by arsenopyrite and pyrite, respectively, indicate that this deposit is ascribed to the low-sulphidation subtype of epithermal deposits, with excursions into higher states of sulphidation. Additionally, the occurrence of pyrophyllite and topaz has been interpreted as the result of discrete pulses of high-sulphidation magmatic fluids. The ÎŽ34SVCDT range in sulphides (−5.9 to −2.8‰) is compatible either with: (i) hybrid sulphur sources (i.e., magmatic and sedimentary or metasedimentary); or (ii) a sole magmatic source involving magmas that derived from partial melting of sedimentary rocks or underwent crustal assimilation. In their overall contents in critical elements (In, Ga and Ge), the key minerals in the PoopĂł deposit, based on their abundance in the deposit and compositions, are rhodostannite, franckeite, cassiterite, stannite and, less importantly, teallite, sphalerite and jamesonite. Keywords: critical elements; indium; gallium; germanium; tin; silver; low sulphidation; epithermal; Bolivian Tin Bel

    Mineralogy and distribution of critical elements in the Sn–W–Pb–Ag–Zn Huanuni Deposit, Bolivia

    No full text
    The polymetallic Huanuni deposit, a world-class tin deposit, is part of the Bolivian tin belt. As a likely case for a “mesothermal” or transitional deposit between epithermal and porphyry Sn types (or shallow porphyry Sn), it represents a case that contributes significantly to the systematic study of the distribution of critical elements within the “family” of Bolivian tin deposits. In addition to Sn, Zn and Ag, further economic interest in the area resides in its potential in critical elements such as In, Ga and Ge. This paper provides the first systematic characterisation of the complex mineralogy and mineral chemistry of the Huanuni deposit with the twofold aim of identifying the mineral carriers of critical elements and endeavouring plausible metallogenic processes for the formation of this deposit, by means of a multi-methodological approach. With In concentrations consistently over 2000 ppm, the highest potential for relevant concentrations in this metal resides in widespread tin minerals (cassiterite and stannite) and sphalerite. Hypogene alteration assemblages are hardly developed due to the metasedimentary nature of host rocks, but the occurrence of potassium feldspar, schorl, pyrophyllite and dickite as vein material stand for potassic to phyllic or advanced argillic alteration assemblages and relatively high-temperature (and low pH) mineralising fluids. District-scale mineralogical zonation suggests a thermal zonation with decreasing temperatures from the central to the peripheral areas. A district-scale zonation has been also determined for ή34SVCDT values, which range −7.2‰ to 0.2‰ (mostly −7‰ to −5‰) in the central area and −4.2‰ to 1.0‰ (mainly constrained between −2‰ and 1‰) in peripheral areas. Such values stand for magmatic and metasedimentary sources for sulfur, and their spatial zoning may be related to differential reactivity between mineralising fluids and host rocks, outwardly decreasing from the central to the peripheral areas. Keywords: critical elements; indium; gallium; germanium; tin; silver; cerium; hydrothermal; bolivian tin bel

    Indium mineralization in the volcanic dome-hosted Ánimas–Chocaya–Siete Suyos polymetallic deposit, Potosí, Bolivia

    No full text
    A volcanic dome complex of Miocene age hosts the In-bearing Ánimas–Chocaya–Siete Suyos district in SW Bolivia. Ore mineralization occurs as banded and massive infillings in sub-vertical, NE-SW striking veins. In this article, a detailed petrographic study is combined with in situ mineral geochemistry determinations in ore from the Arturo, Chorro and Diez veins in the Siete Suyos mine, the Ánimas, Burton, Colorada, and Rosario veins in the Ánimas mine and the Nueva vein in the Chocaya mine. A three-stage paragenetic sequence is roughly determined for all of them, and includes (1) an early low-sulfidation stage that is dominated by cassiterite, pyrrhotite, arsenopyrite, and high-Fe sphalerite (FeS > 21 mol. %); (2) a second intermediate-sulfidation stage dominated by pyrite + marcasite ± intermediate product, sphalerite (FeS < 21 mol. %), stannite, and local famatinite; and, (3) a late intermediate-sulfidation stage dominated by galena and Ag-Pb-Sn sulfosalts. Electron-probe microanalyses reveal high indium enrichment in stage-2 sphalerite (up to 9.66 wt.% In) and stannite (up to 4.11 wt.% In), and a moderate enrichment in rare wurtzite (up to 1.61 wt.% In), stage-1 sphalerite (0.35 wt.% In), cassiterite (up to 0.25 wt.% In2O3), and ramdohrite (up to 0.24 wt.% In). Therefore, the main indium mineralization in the district can be associated to the second, intermediate-sulfidation stage, chiefly in those veins in which sphalerite and stannite are more abundant. Atomic concentrations of In and Cu in sphalerite yield a positive correlation at Cu/In = 1 that agrees with a (Cu+ + In3+) 2Zn2+ coupled substitution. The availability of Cu in the mineralizing fluids during the crystallization of sphalerite is, in consequence, essential for the incorporation of indium in its crystal lattice and would control the distribution of indium enrichment at different scales. The highest concentrations of indium in sphalerite, which is found in the Diez vein in the Siete Suyos mine, occur in crustiform bands of sphalerite with local “chalcopyrite disease” texture, which has not been observed in the other studied veins. In stannite, the atomic concentrations of In are negatively correlated with those of Cu and Sn at Cu + In = 2 and Sn + In = 1. Thus, atomic proportions and correlations suggest the contextualization of the main indium mineralization in the sphalerite–stannite–roquesite pseudoternary system. Keywords: critical metals; high-tech metals; indium; sphalerite; Bolivian-type deposit

    The San José-Itos mines, Oruro, Bolivia: structure and Ag-Sn mineralization

    No full text
    A new cartography of the veins and a detailed mineral sequence is provided for the Itos and San José mines, Oruro, Bolivia. The mineral sequence comprises an early stage with arsenopyrite, arsenian pyrite and cassiterite, followed by a stage with tin sulphosalts and Sn-rich sphalerite. In the latest stage, silver and lead sulphosalts formed along with galena, acanthite and sphalerite and minerals typical of advanced argillitic alteration (zunyite and minerals of the alunite supergroup). The occurrence of pseudocubic alunite with jamesonite and zunyite suggests that these minerals are not good indicators for a supergene vs. hydrothermal origin of the advanced argillitic hydrothermal alteration. Concentration of critical elements (In, Ge, Ga, Nb, Ta) in sphalerite, stannite and cassiterite is steadily low.Peer Reviewe

    Distribution of indium in the Ánimas - Chocaya - Siete Suyos District

    No full text
    The Ánimas - Chocaya - Siete Suyos district in SW Bolivia hosts a Bolivian-type polymetallic vein mineralization composed mostly of cassiterite, sphalerite, pyrite, galena, stannite, lead sulfosalts, tin sulfosalts and silver sulfosalts. In addition to base (Zn, Sn, Pb) and precious (Ag) metals, important concentrations of In have been described. Systematic EPMA analyses have revealed that the highest concentrations are found in an early generation of sphalerite (up to 9.66 wt% In) and in stannite (up to 4.11 wt% In). Although In-bearing sphalerites are relatively Fe-rich (mostly between 6.0 and 18.1 mol % FeS), the atomic concentrations of these two elements do not yield any correlation. In contrast, In is positively correlated with Cu mostly along a Cu/In = 1 proportion pointing to a (In3+ + Cu+ ) ¿ 2Zn2+ coupled substitution. A relatively high activity of Cu during the crystallization of In-rich sphalerite is also supported by exsolutions of chalcopyrite and stannite.Peer Reviewe

    The San José-Itos mines, Oruro, Bolivia: structure and Ag-Sn mineralization

    No full text
    A new cartography of the veins and a detailed mineral sequence is provided for the Itos and San José mines, Oruro, Bolivia. The mineral sequence comprises an early stage with arsenopyrite, arsenian pyrite and cassiterite, followed by a stage with tin sulphosalts and Sn-rich sphalerite. In the latest stage, silver and lead sulphosalts formed along with galena, acanthite and sphalerite and minerals typical of advanced argillitic alteration (zunyite and minerals of the alunite supergroup). The occurrence of pseudocubic alunite with jamesonite and zunyite suggests that these minerals are not good indicators for a supergene vs. hydrothermal origin of the advanced argillitic hydrothermal alteration. Concentration of critical elements (In, Ge, Ga, Nb, Ta) in sphalerite, stannite and cassiterite is steadily low.Peer ReviewedPostprint (published version
    corecore