7,066 research outputs found

    Investigations of Protostellar Outflow Launching and Gas Entrainment: Hydrodynamic Simulations and Molecular Emission

    Full text link
    We investigate protostellar outflow evolution, gas entrainment, and star formation efficiency using radiation-hydrodynamic simulations of isolated, turbulent low-mass cores. We adopt an X-wind launching model, in which the outflow rate is coupled to the instantaneous protostellar accretion rate and evolution. We vary the outflow collimation angle from θ\theta=0.01-0.1 and find that even well collimated outflows effectively sweep up and entrain significant core mass. The Stage 0 lifetime ranges from 0.14-0.19 Myr, which is similar to the observed Class 0 lifetime. The star formation efficiency of the cores spans 0.41-0.51. In all cases, the outflows drive strong turbulence in the surrounding material. Although the initial core turbulence is purely solenoidal by construction, the simulations converge to approximate equipartition between solenoidal and compressive motions due to a combination of outflow driving and collapse. When compared to a simulation of a cluster of protostars, which is not gravitationally centrally condensed, we find that the outflows drive motions that are mainly solenoidal. The final turbulent velocity dispersion is about twice the initial value of the cores, indicating that an individual outflow is easily able to replenish turbulent motions on sub-parsec scales. We post-process the simulations to produce synthetic molecular line emission maps of 12^{12}CO, 13^{13}CO, and C18^{18}O and evaluate how well these tracers reproduce the underlying mass and velocity structure.Comment: Accepted to ApJ, 17 pages, 15 figure

    An Extinction Study of the Taurus Dark Cloud Complex

    Get PDF
    We present a study of the detailed distribution of extinction in a region of the Taurus dark cloud complex. Our study uses new BVR images of the region, spectral classification data for 95 stars, and IRAS Sky Survey Atlas (ISSA) 60 and 100 micron images. We study the extinction of the region in four different ways, and we present the first inter-comparison of all these methods, which are: 1) using the color excess of background stars for which spectral types are known; 2) using the ISSA 60 and 100 micron images; 3) using star counts; and 4) using an optical (V and R) version of the average color excess method used by Lada et al. (1994). We find that all four methods give generally similar results, with important exceptions. To study the structure in the dust distribution, we compare the ISSA extinction and the extinction measured for individual stars. From the comparison, we conclude that in the relatively low extinction regions studied, with 0.9 < A_V < 3.0 mag (away from filamentary dark clouds and IRAS cores), there are no fluctuations in the dust column density greater than 45% (at the 99.7% confidence level), on scales smaller than 0.2 pc. We also report the discovery of a previously unknown stellar cluster behind the Taurus dark cloud near R.A 4h19m00s, Dec. 27:30:00 (B1950)Comment: 49 pages (which include 6 pages of tables and 6 pages of figures

    The UN in the lab

    Get PDF
    We consider two alternatives to inaction for governments combating terrorism, which we term Defense and Prevention. Defense consists of investing in resources that reduce the impact of an attack, and generates a negative externality to other governments, making their countries a more attractive objective for terrorists. In contrast, Prevention, which consists of investing in resources that reduce the ability of the terrorist organization to mount an attack, creates a positive externality by reducing the overall threat of terrorism for all. This interaction is captured using a simple 3×3 “Nested Prisoner’s Dilemma” game, with a single Nash equilibrium where both countries choose Defense. Due to the structure of this interaction, countries can benefit from coordination of policy choices, and international institutions (such as the UN) can be utilized to facilitate coordination by implementing agreements to share the burden of Prevention. We introduce an institution that implements a burden-sharing policy for Prevention, and investigate experimentally whether subjects coordinate on a cooperative strategy more frequently under different levels of cost sharing. In all treatments, burden sharing leaves the Prisoner’s Dilemma structure and Nash equilibrium of the game unchanged. We compare three levels of burden sharing to a baseline in a between-subjects design, and find that burden sharing generates a non-linear effect on the choice of the efficient Prevention strategy and overall performance. Only an institution supporting a high level of mandatory burden sharing generates a significant improvement in the use of the Prevention strategy

    A Micro Molecular Bipolar Outflow From HL Tau

    Full text link
    We present detailed geometry and kinematics of the inner outflow toward HL Tau observed using Near Infrared Integral Field Spectograph (NIFS) at the Gemini-North 8-m Observatory. We analyzed H2 2.122 um emission and [Fe II] 1.644 um line emission as well as the adjacent continuum observed at a <0".2 resolution. The H2 emission shows (1) a bubble-like geometry to the northeast of the star, as briefly reported in the previous paper, and (2) faint emission in the southwest counterflow, which has been revealed through careful analysis. The emission on both sides of the star show an arc 1".0 away from the star, exhibiting a bipolar symmetry. Different brightness and morphologies in the northeast and southwest flows are attributed to absorption and obscuration of the latter by a flattened envelope and a circumstellar disk. The H2 emission shows a remarkably different morphology from the collimated jet seen in [Fe II] emission. The positions of some features coincide with scattering continuum, indicating that these are associated with cavities in the dusty envelope. Such properties are similar to millimeter CO outflows, although the spatial scale of the H2 outflow in our image (~150 AU) is strikingly smaller than the mm outflows, which often extend over 1000-10000 AU scales. The position-velocity diagram of the H2 and [Fe II] emission do not show any evidence for kinematic interaction between these flows. All results described above support the scenario that the jet is surrounded by an unseen wide-angled wind, which interacts with the ambient gas and produce the bipolar cavity and shocked H2 emission.Comment: 13 pages, 4 figures, accepted for publication in ApJ

    ALMA Cycle 1 Observations of the HH46/47 Molecular Outflow: Structure, Entrainment and Core Impact

    Full text link
    We present ALMA Cycle 1 observations of the HH46/47 molecular outflow using combined 12m array and ACA observations. The improved angular resolution and sensitivity of our multi-line maps reveal structures that help us study the entrainment process in much more detail and allow us to obtain more precise estimates of outflow properties than previous observations. We use 13CO(1-0) and C18O(1-0) emission to correct for the 12CO(1-0) optical depth to accurately estimate the outflow mass, momentum and kinetic energy. This correction increases the estimates of the mass, momentum and kinetic energy by factors of about 9, 5 and 2, respectively, with respect to estimates assuming optically thin emission. The new 13CO and C18O data also allow us to trace denser and slower outflow material than that traced by the 12CO maps, and they reveal an outflow cavity wall at very low velocities (as low as 0.2km/s with respect to the cores central velocity). Adding with the slower material traced only by 13CO and C18O, there is another factor of 3 increase in the mass estimate and 50% increase in the momentum estimate. The estimated outflow properties indicate that the outflow is capable of dispersing the parent core within the typical lifetime of the embedded phase of a low-mass protostar, and that it is responsible for a core-to-star efficiency of 1/4 to 1/3. We find that the outflow cavity wall is composed of multiple shells associated with a series of jet bow-shock events. Within about 3000AU of the protostar the 13CO and C18O emission trace a circumstellar envelope with both rotation and infall motions, which we compare with a simple analytic model. The CS(2-1) emission reveals tentative evidence of a slowly-moving rotating outflow, which we suggest is entrained not only poloidally but also toroidally by a disk wind that is launched from relatively large radii from the source.Comment: Accepted for publication in ApJ. 26 pages, 20 figure

    Critical Comparison between Modified Monier-Williams and Electrochemical Methods to Determine Sulfite in Aqueous Solutions

    Get PDF
    In the present work, known concentration of sulfite aqueous solutions in the presence and absence of gallic acid was measured to corroborate the validity of modified Monier-Williams method. Free and bound-sulfite was estimated by differential pulse voltammetry. To our surprise, the modified Monier-Williams method (also known as aspiration method) showed to be very inaccurate for free-sulfite, although suitable for bound-sulfite determination. The differential pulse approach, using the standard addition method and a correction coefficient, proved to be swift, cheap, and very precise and accurate
    corecore