7,364 research outputs found
Investigations of Protostellar Outflow Launching and Gas Entrainment: Hydrodynamic Simulations and Molecular Emission
We investigate protostellar outflow evolution, gas entrainment, and star
formation efficiency using radiation-hydrodynamic simulations of isolated,
turbulent low-mass cores. We adopt an X-wind launching model, in which the
outflow rate is coupled to the instantaneous protostellar accretion rate and
evolution. We vary the outflow collimation angle from =0.01-0.1 and
find that even well collimated outflows effectively sweep up and entrain
significant core mass. The Stage 0 lifetime ranges from 0.14-0.19 Myr, which is
similar to the observed Class 0 lifetime. The star formation efficiency of the
cores spans 0.41-0.51. In all cases, the outflows drive strong turbulence in
the surrounding material. Although the initial core turbulence is purely
solenoidal by construction, the simulations converge to approximate
equipartition between solenoidal and compressive motions due to a combination
of outflow driving and collapse. When compared to a simulation of a cluster of
protostars, which is not gravitationally centrally condensed, we find that the
outflows drive motions that are mainly solenoidal. The final turbulent velocity
dispersion is about twice the initial value of the cores, indicating that an
individual outflow is easily able to replenish turbulent motions on sub-parsec
scales. We post-process the simulations to produce synthetic molecular line
emission maps of CO, CO, and CO and evaluate how well
these tracers reproduce the underlying mass and velocity structure.Comment: Accepted to ApJ, 17 pages, 15 figure
An Extinction Study of the Taurus Dark Cloud Complex
We present a study of the detailed distribution of extinction in a region of
the Taurus dark cloud complex. Our study uses new BVR images of the region,
spectral classification data for 95 stars, and IRAS Sky Survey Atlas (ISSA) 60
and 100 micron images. We study the extinction of the region in four different
ways, and we present the first inter-comparison of all these methods, which
are: 1) using the color excess of background stars for which spectral types are
known; 2) using the ISSA 60 and 100 micron images; 3) using star counts; and 4)
using an optical (V and R) version of the average color excess method used by
Lada et al. (1994). We find that all four methods give generally similar
results, with important exceptions. To study the structure in the dust
distribution, we compare the ISSA extinction and the extinction measured for
individual stars. From the comparison, we conclude that in the relatively low
extinction regions studied, with 0.9 < A_V < 3.0 mag (away from filamentary
dark clouds and IRAS cores), there are no fluctuations in the dust column
density greater than 45% (at the 99.7% confidence level), on scales smaller
than 0.2 pc. We also report the discovery of a previously unknown stellar
cluster behind the Taurus dark cloud near R.A 4h19m00s, Dec. 27:30:00 (B1950)Comment: 49 pages (which include 6 pages of tables and 6 pages of figures
The UN in the lab
We consider two alternatives to inaction for governments combating terrorism, which we term Defense and Prevention. Defense consists of investing in resources that reduce the impact of an attack, and generates a negative externality to other governments, making their countries a more attractive objective for terrorists. In contrast, Prevention, which consists of investing in resources that reduce the ability of the terrorist organization to mount an attack, creates a positive externality by reducing the overall threat of terrorism for all. This interaction is captured using a simple 3×3 “Nested Prisoner’s Dilemma” game, with a single Nash equilibrium where both countries choose Defense. Due to the structure of this interaction, countries can benefit from coordination of policy choices, and international institutions (such as the UN) can be utilized to facilitate coordination by implementing agreements to share the burden of Prevention. We introduce an institution that implements a burden-sharing policy for Prevention, and investigate experimentally whether subjects coordinate on a cooperative strategy more frequently under different levels of cost sharing. In all treatments, burden sharing leaves the Prisoner’s Dilemma structure and Nash equilibrium of the game unchanged. We compare three levels of burden sharing to a baseline in a between-subjects design, and find that burden sharing generates a non-linear effect on the choice of the efficient Prevention strategy and overall performance. Only an institution supporting a high level of mandatory burden sharing generates a significant improvement in the use of the Prevention strategy
Recommended from our members
Global Gene Expression Analysis Identifies Age-Related Differences in Knee Joint Transcriptome during the Development of Post-Traumatic Osteoarthritis in Mice.
Aging and injury are two major risk factors for osteoarthritis (OA). Yet, very little is known about how aging and injury interact and contribute to OA pathogenesis. In the present study, we examined age- and injury-related molecular changes in mouse knee joints that could contribute to OA. Using RNA-seq, first we profiled the knee joint transcriptome of 10-week-old, 62-week-old, and 95-week-old mice and found that the expression of several inflammatory-response related genes increased as a result of aging, whereas the expression of several genes involved in cartilage metabolism decreased with age. To determine how aging impacts post-traumatic arthritis (PTOA) development, the right knee joints of 10-week-old and 62-week-old mice were injured using a non-invasive tibial compression injury model and injury-induced structural and molecular changes were assessed. At six-week post-injury, 62-week-old mice displayed significantly more cartilage degeneration and osteophyte formation compared with young mice. Although both age groups elicited similar transcriptional responses to injury, 62-week-old mice had higher activation of inflammatory cytokines than 10-week-old mice, whereas cartilage/bone metabolism genes had higher expression in 10-week-old mice, suggesting that the differential expression of these genes might contribute to the differences in PTOA severity observed between these age groups
A Micro Molecular Bipolar Outflow From HL Tau
We present detailed geometry and kinematics of the inner outflow toward HL
Tau observed using Near Infrared Integral Field Spectograph (NIFS) at the
Gemini-North 8-m Observatory. We analyzed H2 2.122 um emission and [Fe II]
1.644 um line emission as well as the adjacent continuum observed at a <0".2
resolution. The H2 emission shows (1) a bubble-like geometry to the northeast
of the star, as briefly reported in the previous paper, and (2) faint emission
in the southwest counterflow, which has been revealed through careful analysis.
The emission on both sides of the star show an arc 1".0 away from the star,
exhibiting a bipolar symmetry. Different brightness and morphologies in the
northeast and southwest flows are attributed to absorption and obscuration of
the latter by a flattened envelope and a circumstellar disk. The H2 emission
shows a remarkably different morphology from the collimated jet seen in [Fe II]
emission. The positions of some features coincide with scattering continuum,
indicating that these are associated with cavities in the dusty envelope. Such
properties are similar to millimeter CO outflows, although the spatial scale of
the H2 outflow in our image (~150 AU) is strikingly smaller than the mm
outflows, which often extend over 1000-10000 AU scales. The position-velocity
diagram of the H2 and [Fe II] emission do not show any evidence for kinematic
interaction between these flows. All results described above support the
scenario that the jet is surrounded by an unseen wide-angled wind, which
interacts with the ambient gas and produce the bipolar cavity and shocked H2
emission.Comment: 13 pages, 4 figures, accepted for publication in ApJ
ALMA Cycle 1 Observations of the HH46/47 Molecular Outflow: Structure, Entrainment and Core Impact
We present ALMA Cycle 1 observations of the HH46/47 molecular outflow using
combined 12m array and ACA observations. The improved angular resolution and
sensitivity of our multi-line maps reveal structures that help us study the
entrainment process in much more detail and allow us to obtain more precise
estimates of outflow properties than previous observations. We use 13CO(1-0)
and C18O(1-0) emission to correct for the 12CO(1-0) optical depth to accurately
estimate the outflow mass, momentum and kinetic energy. This correction
increases the estimates of the mass, momentum and kinetic energy by factors of
about 9, 5 and 2, respectively, with respect to estimates assuming optically
thin emission. The new 13CO and C18O data also allow us to trace denser and
slower outflow material than that traced by the 12CO maps, and they reveal an
outflow cavity wall at very low velocities (as low as 0.2km/s with respect to
the cores central velocity). Adding with the slower material traced only by
13CO and C18O, there is another factor of 3 increase in the mass estimate and
50% increase in the momentum estimate. The estimated outflow properties
indicate that the outflow is capable of dispersing the parent core within the
typical lifetime of the embedded phase of a low-mass protostar, and that it is
responsible for a core-to-star efficiency of 1/4 to 1/3. We find that the
outflow cavity wall is composed of multiple shells associated with a series of
jet bow-shock events. Within about 3000AU of the protostar the 13CO and C18O
emission trace a circumstellar envelope with both rotation and infall motions,
which we compare with a simple analytic model. The CS(2-1) emission reveals
tentative evidence of a slowly-moving rotating outflow, which we suggest is
entrained not only poloidally but also toroidally by a disk wind that is
launched from relatively large radii from the source.Comment: Accepted for publication in ApJ. 26 pages, 20 figure
Critical Comparison between Modified Monier-Williams and Electrochemical Methods to Determine Sulfite in Aqueous Solutions
In the present work, known concentration of sulfite aqueous solutions in the presence and absence of gallic acid was measured to corroborate the validity of modified Monier-Williams method. Free and bound-sulfite was estimated by differential pulse voltammetry. To our surprise, the modified Monier-Williams method (also known as aspiration method) showed to be very inaccurate for free-sulfite, although suitable for bound-sulfite determination. The differential pulse approach, using the standard addition method and a correction coefficient, proved to be swift, cheap, and very precise and accurate
- …