36 research outputs found

    Deletion of L-Selectin Increases Atherosclerosis Development in ApoE−/− Mice

    Get PDF
    Atherosclerosis is an inflammatory disease characterized by accumulation of leukocytes in the arterial intima. Members of the selectin family of adhesion molecules are important mediators of leukocyte extravasation. However, it is unclear whether L-selectin (L-sel) is involved in the pathogenesis of atherosclerosis. In the present study, mice deficient in L-selectin (L-sel−/−) animals were crossed with mice lacking Apolipoprotein E (ApoE−/−). The development of atherosclerosis was analyzed in double-knockout ApoE/L-sel (ApoE−/− L-sel−/−) mice and the corresponding ApoE−/− controls fed either a normal or a high cholesterol diet (HCD). After 6 weeks of HCD, aortic lesions were increased two-fold in ApoE−/− L-sel−/− mice as compared to ApoE−/− controls (2.46%±0.54% vs 1.28%±0.24% of total aortic area; p<0.05). Formation of atherosclerotic lesions was also enhanced in 6-month-old ApoE−/− L-sel−/− animals fed a normal diet (10.45%±2.58% vs 1.87%±0.37%; p<0.05). In contrast, after 12 weeks of HCD, there was no difference in atheroma formation between ApoE−/− L-sel−/− and ApoE−/− mice. Serum cholesterol levels remained unchanged by L-sel deletion. Atherosclerotic plaques did not exhibit any differences in cellular composition assessed by immunohistochemistry for CD68, CD3, CD4, and CD8 in ApoE−/− L-sel−/− as compared to ApoE−/− mice. Leukocyte rolling on lesions in the aorta was similar in ApoE−/− L-sel−/− and ApoE−/− animals. ApoE−/− L-sel−/− mice exhibited reduced size and cellularity of peripheral lymph nodes, increased size of spleen, and increased number of peripheral lymphocytes as compared to ApoE−/− controls. These data indicate that L-sel does not promote atherosclerotic lesion formation and suggest that it rather protects from early atherosclerosis

    Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse

    Get PDF
    International audienceMemory CD8(+) T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m). Memory CD8(+) T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8(+) T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs) fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m) as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8(+) T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8(+) T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8(+) T cells localize in the splenic red pulp and form clusters around L.m infected cells while naĂŻve CD8(+) T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8(+) T produce inflammatory cytokines such as IFN-gamma and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8(+) T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8(+) T cells provide a local response by secreting effector molecules around infected cells

    The Shedding of CD62L (L-Selectin) Regulates the Acquisition of Lytic Activity in Human Tumor Reactive T Lymphocytes

    Get PDF
    CD62L/L-selectin is a marker found on naïve T cells and further distinguishes central memory (Tcm, CD62L+) from effector memory (Tem, CD62L−) T cells. The regulation of CD62L plays a pivotal role in controlling the traffic of T lymphocytes to and from peripheral lymph nodes. CD62L is shed from the cell membrane following T cell activation, however, the physiological significance of this event remains to be elucidated. In this study, we utilized in vitro generated anti-tumor antigen T cells and melanoma lines as a model to evaluate the dynamics of CD62L shedding and expression of CD107a as a marker of lytic activity. Upon encounter, with matched tumor lines, antigen reactive T cells rapidly lose CD62L expression and this was associated with the acquisition of CD107a. By CD62L ELISA, we confirmed that this transition was mediated by the shedding of CD62L when T cells encountered specific tumor antigen. The introduction of a shedding resistant mutant of CD62L into the tumor antigen-reactive T cell line JKF6 impaired CD107a acquisition following antigen recognition and this was correlated with decreased lytic activity as measured by 51Cr release assays. The linkage of the shedding of CD62L from the surface of anti-tumor T cells and acquisition of lytic activity, suggests a new function for CD62L in T cell effector functions and anti-tumor activity

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Plasma DYRK1A as a novel risk factor for Alzheimer's disease

    Get PDF
    International audienceTo determine whether apparent involvement of DYRK1A in Alzheimer's disease (AD) pathology makes it a candidate plasma biomarker for diagnosis, we developed a method to quantify plasma DYRK1A by immunoblot in transgenic mouse models having different gene dosages of Dyrk1a, and, consequently, different relative protein expression. Then, we measured plasma DYRK1A levels in 26 patients with biologically confirmed AD and 25 controls (negative amyloid imaging available on 13). DYRK1A was detected in transgenic mouse brain and plasma samples, and relative levels of DYRK1A correlated with the gene copy number. In plasma from AD patients, DYRK1A levels were significantly lower compared with controls (P o 0.0001). Results were similar when we compared AD patients with the subgroup of controls confirmed by negative amyloid imaging. In a subgroup of patients with early AD (CDR = 0.5), lower DYRK1A expression was confirmed. In contrast, no difference was found in levels of DYRK1B, the closest relative of DYRK1A, between AD patients and controls. Further, AD patients exhibited a positive correlation between plasma DYRK1A levels and cerebrospinal fluid tau and phosphorylated-tau proteins, but no correlation with amyloid-ÎČ42 levels and Pittsburgh compound B cortical binding. DYRK1A levels detected in lymphoblastoid cell lines from AD patients were also lower when compared with cells from age-matched controls. These findings suggest that reduced DYRK1A expression might be a novel plasma risk factor for AD
    corecore