63 research outputs found

    VV Pup in a low state: secondary-star irradiation or stellar activity?

    Full text link
    Aims. Emission lines in polars show complex profiles with multiple components that are typically ascribed to the accretion stream, threading region, accretion spot, and the irradiated secondary-star. In low-state polars the fractional contribution by the accretion stream, and the accretion spot is greatly reduced offering an opportunity to study the effect of the secondary-star irradiation or stellar activity. We observed VV Pup during an exceptional low-state to study and constrain the properties of the line-forming regions and to search for evidence of chromospheric activity and/or irradiation. Methods. We obtained phase-resolved optical spectra at the ESO VLT+FORS1 with the aim of analyzing the emission line profile and radial velocity as a function of the orbital period. We also tailored irradiated secondary-star models to compare the predicted and the observed emission lines and to establish the nature of the line-forming regions. Results. Our observations and data analysis, when combined with models of the irradiated secondary-star, show that, while the weak low ionization metal lines (FeI and MgI) may be consistent with irradiation processes, the dominant Balmer H emission lines, as well as NaI and HeI, cannot be reproduced by the irradiated secondary-star models. We favor the secondary-star chromospheric activity as the main forming region and cause of the observed H, NaI, and He emission lines, though a threading region very close to the L1 point cannot be excluded.Comment: 10 pages, 9 figures, in press on A&

    HS 0139+0559, HS 0229+8016, HS 0506+7725, and HS 0642+5049 : four new long-period cataclysmic variables

    Get PDF
    We present time-resolved optical spectroscopy and photometry of four relatively bright (V ∌ 14.0−15.5) long-period cataclysmic variables(CVs) discovered in the Hamburg Quasar Survey: HS 0139+0559, HS 0229+8016, HS 0506+7725, and HS 0642+5049. Their respective orbital periods, 243.69 ± 0.49 min, 232.550 ± 0.049 min, 212.7 ± 0.2 min, and 225.90 ± 0.23 min are determined from radial velocity and photometric variability studies. HS 0506+7725 is characterised by strong Balmer and He emission lines, short-period (∌10−20 min) flickering, and weak X-ray emission in the ROSAT All Sky Survey. The detection of a deep low state (B 18.5) identifies HS 0506+7725 as a member of the VY Scl stars. HS 0139+0559, HS 0229+8016, and HS 0642+5049 display thick-disc like spectra and no or only weak flickering activity. HS 0139+0559 and HS 0229+8016 exhibit clean quasi-sinusoidal radial velocity variations of their emission lines but no or very little orbital photometricvariability. In contrast, we detect no radial velocity variation in HS 0642+5049 but a noticeable orbital brightness variation. We identify all three systems either as UX UMa-type novalike variables or as Z Cam-type dwarf novae. Our identification of these four new systems underlines that the currently known sample of CVs is rather incomplete even for bright objects. The four new systems add to the clustering of orbital periods in the 3−4 h range found in the sample of HQS selected CVs, and we discuss the large incidence of magnetic CVs and VY Scl/SW Sex stars found in this period range among the known population of CVs

    HS 2237+8154 : on the onset of mass transfer or entering the period gap?

    Get PDF
    We report follow-up observations of a new white dwarf/red dwarf binary HS 2237+8154, identified as a blue variable star from the Hamburg Quasar Survey. Ellipsoidal modulation observed in the R band as well as the radial velocity variations measured from time-resolved spectroscopy determine the orbital period to be Porb = 178.10 +- 0.08 min. The optical spectrum of HS 2237+8154 is well described by a combination of a Teff = 11500 +- 1500 K white dwarf (assuming log g = 8) and a dM 3.5 +- 0.5 secondary star. The distance implied from the flux scaling factors of both stellar components is d = 105 +- 25 pc. Combining the constraints obtained from the radial velocity of the secondary and from the ellipsoidal modulation, we derive a binary inclination of i = 50-70 and stellar masses of and Mwd = 0.47-0.67 M and Msec = 0.2-0.4 M. All observations imply that the secondary star must be nearly Roche-lobe filling. Consequently, HS 2237+8154 may be either a pre-cataclysmic variable close to the start of mass transfer, or - considering its orbital period - a cataclysmic variable that terminated mass transfer and entered the period gap, or a hibernating nova

    Discovery of 15-second oscillations in Hubble Space Telescope observations of WZ Sagittae following the 2001 outburst

    Get PDF
    We report the discovery of 15-s oscillations in ultraviolet observations of WZ Sge obtained with the Hubble Space Telescope approximately one month after the peak of the 2001 outburst. This is the earliest detection of oscillations in WZ Sge following an outburst and the first time that a signal near 15 s has been seen to be dominant. The oscillations are quite strong (amplitude about 5%), but not particularly coherent. In one instance, the oscillation period changed by 0.7 s between successive observations separated by less than 1 hour. We have also found evidence for weaker signals with periods near 6.5 s in some of our data. We discuss the implications of our results for the models that have been proposed to account for the 28-s oscillations seen in quiescence. If the periods of the 15-s oscillations can be identified with the periods of revolution of material rotating about the white dwarf, the mass of the white dwarf must satisfy M_WD > 0.71 M_sun. The corresponding limit for the 6.5-s signals is M_WD > 1.03 M_sun.Comment: accepted for publication in ApJ Letters; 13 pages, 4 postscript figures; new version corrects a few typos and matches version that will appear in ApJ

    HS 0943+1404 : a true intermediate polar

    Get PDF
    We have identified a new intermediate polar, HS 0943+1404, as part of our ongoing search for cataclysmic variables in the Hamburg Quasar Survey. The orbital and white dwarf spin periods determined from time-resolved photometry and spectroscopy are P orb 250 min and P spin = 69.171 ± 0.001 min, respectively. The combination of a large ratio P spin /P orb 0.3 and a long orbital period is very unusual compared to the other known intermediate polars. The magnetic moment of the white dwarf is estimated to be ” 1 ∌ 10 34 Gcm 3, which is in the typical range of polars. Our extensive photometry shows that HS 0943+1404 enters into deep (∌3 mag) low states, which are also a characteristic feature of polars. We therefore suggest that the system is a true “intermediate” polar that will eventually synchronise, that is, a transitional object between intermediate polars and polars. The optical spectrum of HS 0943+1404 also exhibits a number of unusual emission lines, most noticeably N II λ5680, which is likely to reflect enhanced nitrogen abundances in the envelope of the secondary

    HS 2331+3905: The Cataclysmic Variable That Has It All

    Get PDF
    We report detailed follow-up observations of the cataclysmic variable HS 2331+3905, identified as an emission- line object in the Hamburg Quasar Survey. An orbital period of 81.08 min is unambiguously determined from the detection of eclipses in the light curves of HS 2331+3905. A second photometric period is consistently detected at P ≃ 83.38 min, ∌2.8% longer than Porb, which we tentatively relate to the presence of permanent superhumps. High time resolution photometry exhibits short-timescale variability on time scales of ≃5−6 min which we interpret as non-radial white dwarf pulsations, as well as a coherent signal at 1.12 min, which is likely to be the white dwarf spin period. A large-amplitude quasi-sinusoidal radial velocity modulation of the Balmer and Helium lines with a period ∌3.5 h is persistently detected throughout three seasons of time-resolved spectroscopy. However, this spectroscopic period, which is in no way related to the orbital period, is not strictly coherent but drifts in period and/or phase on time scales of a few days. Modeling the far-ultraviolet to infrared spectral energy distribution of HS 2331+3905, we determine a white dwarf temperature of Teff ≃ 10 500 K (assuming Mwd = 0.6 M⊙), close to the ZZ Ceti instability strip of single white dwarfs. The spectral model implies a distance of d = 90 ± 15 pc, and a low value for the distance is supported by the large proper motion of the system, ÎŒ = 0.14â€Čâ€Č yr−1. The non-detection of molecular bands and the low J, H, and K fluxes of HS 2331+3905 make this object a very likely candidate for a brown-dwarf donor

    Detection of the white dwarf and the secondary star in the new SU UMa dwarf nova HS 2219+1824

    Get PDF
    We report the discovery of a new, non-eclipsing SU UMa-type dwarf nova, HS 2219+1824. Photometry obtained in quiescence (V ≈ 17.5) reveals a double-humped light curve from which we derive an orbital period of 86.2 min. Additional photometry obtained during a superoutburst reaching V 12.0 clearly shows superhumps with a period of 89.05 min. The optical spectrum contains double-peaked Balmer and He I emission lines from the accretion disc as well as broad absorption troughs of HÎČ, HÎł, and HÎŽ from the white dwarf primary star. Modelling of the optical spectrum implies a white dwarf temperature of 13 000 K < ∌ T eïŹ€ < ∌ 17 000 K, a distance of 180 pc < ∌ d < ∌ 230 pc, and suggests that the spectral type of the donor star is later than M 5. Phase-resolved spectroscopy obtained during quiescence reveals a narrow Hα emission line component which has a radial velocity amplitude and phase consistent with an origin on the secondary star, possibly on the irradiated hemisphere facing the white dwarf. This constitutes the first detection of line emission from the secondary star in a quiescent SU UMa star

    The system parameters of DW Ursae Majoris

    Get PDF
    We present new constraints on the system parameters of the SW Sextantis star DW Ursae Majoris, based on ultraviolet (UV) eclipse observations with the Hubble Space Telescope. Our data were obtained during a low state of the system, in which the UV light was dominated by the hot white dwarf (WD) primary. Eclipse analysis, using the full Roche lobe geometry, allows us to set firm limits on the masses and radii of the system components and the distance between them: 0.67 \leq M_1/M_sun \leq 1.06, 0.008 \leq R_1/R_sun \leq 0.014, M_2/M_sun > 0.16, R_2/R_sun > 0.28 and a/R_sun > 1.05. For q = M_2/M_1 < 1.5 the inclination must satisfy i > 71 degrees. Using Smith & Dhillon's mass-period relation for CV secondaries, our estimates for the system parameters become M_1/M_sun = 0.77 \pm 0.07, R_1/R_sun = 0.012 \pm 0.001, M_2/M_sun = 0.30 \pm 0.10, R_2/R_sun = 0.34 \pm 0.04, q =0.39 \pm 0.12, i = 82 \pm 4 degrees and a/R_sun = 1.14 \pm 0.06. We have also estimated the spectral type of the secondary, M3.5 \pm 1.0, and distance to the system, d =930 \pm 160 pc, from time-resolved I- and K-band photometry. Finally, we have repeated Knigge et al.'s WD model atmosphere fit to the low-state UV spectrum of DW UMa in order to account for the higher surface gravity indicated by our eclipse analysis. In this way we obtained a second estimate for the distance, d = 590 \pm 100 pc, which allows us to obtain a second estimate for the spectral type of the secondary, M7 \pm 2.0. We conclude that the true value for the distance and spectral type will probably be in between the values obtained by the two methods.Comment: 23 pages including 5 figures and 3 tables. Accepted for publication in Ap

    'The language of the naked facts': Joseph Priestley on language and revealed religion

    Get PDF
    Joseph Priestley (1733-1804) is usually remembered for his experiments in natural philosophy and celebrated for his isolation of the gas we now call oxygen. However, Priestley had a wide range of interests and published extensively on education, history, politics, political philosophy, language, theology and religion. He dedicated his life to elucidating a coherent set of epistemological, metaphysical and theological principles which he believed explained the human mind, the natural world and the nature of God and revelation. Recent studies of Priestley have emphasised the difficulties that arise from isolating the various aspects of his thought and the fruitful outcome of uncovering the many connections between his diverse areas of study. With this in mind, the present dissertation aims to elucidate the relationship between two aspects of Priestley’s thought that have not previously been studied together. It examines his theory of language and argument alongside his work on theology and the evidences of revelation. Chapter One provides an overview of Priestley’s epistemology, focusing on his work on induction, judgment and assent. Chapter Two looks at Priestley’s analysis of the role of the passions in our assent to propositions and the progressive generation of the personality, while paying particular attention to the origins of figurative language. Chapter Three examines Priestley’s theory of language development including the relationship between figurative language and the extension of vocabulary and the close connection between language and culture. Chapter Four demonstrates that Priestley’s discussion of the evidences of revealed religion is structured around his theory of assent and judgment. It also explains how assent to revelation is essential for the generation and transcendence of the ‘self’. Chapter Five brings all the themes of the dissertation together in a discussion of Priestley’s rational theology and examines his analysis of figurative language in scripture
    • 

    corecore