981 research outputs found

    Research note: The influence of micro-oxygenation on the long-term ageing ability of Pinot noir wine

    Get PDF
    In this study, Pinot noir wines were bottle aged for 12 and 18 months after micro-oxygenation (MOX) applied before or after malolactic fermentation (MLF) at two doses (10.8 and 52.4 mg/L/month). After ageing, a greater decrease in the total SO₂ concentration was found in wines with the higher MOX dosage, demonstrating a long-term impact of higher oxygen exposure on wines’ SO₂ requirement. Meanwhile, a negative impact of MOX on wine colour development occurred over time, resulting in a large loss of colour measures (i.e., 420 nm for brown hues, 520 nm for red colour, SO₂ resistant pigments, and colour intensity), which was greater with the early oxygen exposure. This was linked to a significantly lower content of large polymeric pigments in MOX treatments. Tannin concentration was, in the end, not affected by the MOX treatments. However, regarding tannin composition, considerably higher (-)-epicatechin extension units but much lower (-)-epicatechin terminal units were found with MOX treatments. In addition, a significant reduction of tannin trihydroxylation (%Tri-OH) but a higher galloylation (%Galloyl) and mean degree of tannin polymerisation (mDP) remained in wines with MOX, indicating a long-term negative influence on astringency intensity

    Impact of microoxygenation on Pinot noir wines with different initial phenolic content

    Get PDF
    Microoxygenation (MOX) is used to improve wine colour and sensory quality; however, limited information is available for Pinot noir wines and wines with different initial phenolic content. In this study, MOX was applied to two Pinot noir wines, with either a low or a high phenolic content, at two doses (0.50 and 2.11 mg/L/day) for 14 days. With the sterile filtration applied, acetaldehyde formation during MOX was very low, supporting the influence of yeast on acetaldehyde production during MOX. The MOX dosage rate did not significantly affect colour development, while the Pinot noir wine with higher phenolics benefited more from MOX, significantly increasing colour intensity and SO₂ resistant (polymeric) pigments. However, these changes did not guarantee colour stability, as a final SO₂ addition (100 mg/L) largely erased the improvement to colour in all wines. This could be due to the lower acetaldehyde formation, thus less ethyl-bridged stable pigments resistant to SO₂ bleaching. MOX also decreased the flavan-3-ols and anthocyanin monomers, which differed between the two Pinot noir wines, reflecting the initial phenolic content. Lastly, MOX generally increased the measured tannin concentration and affected the proportion of tannin subunits, with a decrease in tannin mass conversion and proportion of (-)-epigallocatechin extension units. Some of these changes in phenolic compounds could potentially increase astringency, suggesting that MOX should be applied to Pinot noir and other low phenolic wines with caution

    The Roosevelt – Rondon expedition marmoset (Mico marcai) : unveiling the conservation status of a data deficient species

    Get PDF
    The Roosevelt-Rondon Expedition marmoset, Mico marcai, was collected in 1914 and to date, all information on this species comes from three skins brought back by the Expedition and two additional skins collected in the 1990s. It is no surprise then that M.marcai has been classified as Data Deficient (DD). Given that Mico marcai’s suspected range sits on the path of the advancing Brazilian “Arc-of-Deforestation”, it is urgent that relevant data be collected to assess this taxon. Here we present the first comprehensive field data on the distribution, population size and threats on M. marcai with the goal of removing the species from the DD category. From 2012 to 2015, we surveyed for the species in 11 localities, in and around the Marmelos-Aripuanã interfluve, and estimated density using distance sampling on 10 transects. We also used spatial predictive modelling to project the amount of habitat that will be lost within its range in 18 years under different deforestation scenarios. We found marmosets in 14 localities and calculated its Extent of Occurrence to be 31,073 km2. We walked 271 km and detected 30 marmoset groups, allowing us to estimate their density to be 8.31 individuals/km2 and a total population of 258,217.71 individuals. By a “Business as usual” scenario, 20,181 km2 of habitat will be lost in three marmoset generations (~18 years), compromising 33% of the species’ range. Accordingly, M. marcai should be classified as globally Vulnerable under category A3c. Following our study, we propose the Amazonian marmosets, genus Mico, should undergo similar re-assessment as their ranges all fall in the path of the Arc-of-Deforestation. Keywords: Amazonian marmosets, Conservation Status, Data Deficient, Habitat Loss, Southern Amazoni

    Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    Get PDF
    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications

    BMN vacua, superstars and non-abelian T-duality

    Get PDF
    Acting with non-Abelian T-duality on the S3S^3 inside the AdS5AdS_5 subspace of AdS5×S5AdS_5\times S^5 with NN units of flux, we generate a new half-BPS solution with SU(24)SU(2|4) symmetry that belongs to the Lin-Lunin-Maldacena class of geometries. The analysis of the asymptotics, quantised charges and probe branes in this geometry suggests an interpretation as the gravity dual to the Berenstein-Maldacena-Nastase Plane Wave Matrix Model, in a particular vacuum associated to a partition of NN, in which the multiplicity of each SU(2)SU(2) irreducible representation is equal to its dimension. This vacuum is interpreted in M-theory in terms of giant gravitons backreacting in the maximally supersymmetric pp-wave geometry. Consistently with this, we show that the non-Abelian T-dual solution exactly agrees with the Penrose limit of the superstar solution in AdS7×S4AdS_7\times S^4. This suggests an interesting global completion of the non-Abelian T-dual solution in terms of an M5-brane geometry.Comment: 28 pages, discussion in section 5.1 improved, results unchanged, reference added. Matches published versio

    Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-specific Evolution

    Get PDF
    The origin and evolution of magnetoreception, which in diverse prokaryotes and protozoa is known as magnetotaxis and enables these microorganisms to detect Earth’s magnetic field for orientation and navigation, is not well understood in evolutionary biology. The only known prokaryotes capable of sensing the geomagnetic field are magnetotactic bacteria (MTB), motile microorganisms that biomineralize intracellular, membrane-bounded magnetic single-domain crystals of either magnetite (Fe3O4) or greigite (Fe3S4) called magnetosomes. Magnetosomes are responsible for magnetotaxis in MTB. Here we report the first large-scale metagenomic survey of MTB from both northern and southern hemispheres combined with 28 genomes from uncultivated MTB. These genomes expand greatly the coverage of MTB in the Proteobacteria, Nitrospirae, and Omnitrophica phyla, and provide the first genomic evidence of MTB belonging to the Zetaproteobacteria and “Candidatus Lambdaproteobacteria” classes. The gene content and organization of magnetosome gene clusters, which are physically grouped genes that encode proteins for magnetosome biosynthesis and organization, are more conserved within phylogenetically similar groups than between different taxonomic lineages. Moreover, the phylogenies of core magnetosome proteins form monophyletic clades. Together, these results suggest a common ancient origin of iron-based (Fe3O4 and Fe3S4) magnetotaxis in the domain Bacteria that underwent lineage-specific evolution, shedding new light on the origin and evolution of biomineralization and magnetotaxis, and expanding significantly the phylogenomic representation of MTB
    corecore