148 research outputs found

    Conformational and Immunogenicity Studies of the Shigella flexneri Serogroup 6 O-Antigen: The Effect of O-Acetylation.

    Get PDF
    The pathogenic bacterium Shigella is a leading cause of diarrheal disease and mortality, disproportionately affecting young children in low-income countries. The increasing prevalence of antibiotic resistance in Shigella necessitates an effective vaccine, for which the bacterial lipopolysaccharide O-antigen is the primary target. S. flexneri serotype 6 has been proposed as a multivalent vaccine component to ensure broad protection against Shigella. We have previously explored the conformations of S. flexneri O-antigens from serogroups Y, 2, 3, and 5 that share a common saccharide backbone (serotype Y). Here we consider serogroup 6, which is of particular interest because of an altered backbone repeat unit with non-stoichiometric O-acetylation, the antigenic and immunogenic importance of which have yet to be established. Our simulations show significant conformational changes in serogroup 6 relative to the serotype Y backbone. We further find that O-acetylation has little effect on conformation and hence may not be essential for the antigenicity of serotype 6. This is corroborated by an in vivo study in mice, using Generalized Modules for Membrane Antigens (GMMA) as O-antigen delivery systems, that shows that O-acetylation does not have an impact on the immune response elicited by the S. flexneri serotype 6 O-antigen

    Sequential Nucleation Growth of ZnO Nanoflowers

    Get PDF
    The morphological characteristics of ZnO nanostructures were systematically studied from dense rods to flower-like shapes. The ZnO flower-like samples were prepared by direct decomposition of a Zn(OH)4 2– precursor and by the sequential nucleation and growth method consisted of a multistep synthesis of complex nanostructured films. Condition-dependent experiments systematically were compared as to reveal the formation and detailed growth process of ZnO nanosized crystallites and aggregates. X-ray diffraction, transmission and scanning electron microscopy indicated that the precursor, solution basicity, reaction temperature and pressure as well as reaction time, were responsible for the variations of the morphologies. ZnO flower-like and large nanorods of exceptional uniformity, orientation alignment, and optical properties have been produced in this work. Several synthesis steps are needed to produce oriented nanostructures that are more complex than simple nanorod architectures. These structures have potential applications in building functional electronics devices and optoelectronic properties

    1989 as a mimetic revolution: Russia and the challenge of post-communism

    Get PDF
    Various terms have been used to describe the momentous events of 1989, including Jürgen Habermas’s ‘rectifying revolution,’ and my own notion of 1989 as a type of ‘anti-revolution’: repudiating not only what had come before, but also denying the political logic of communist power, as well as the emancipatory potential of revolutionary socialism in its entirety. In the event, while the negative agenda of 1989 has been fulfilled, it failed in the end to transcend the political logic of the systems that collapsed at that time. This paper explores the unfulfilled potential of 1989. Finally, 1989 became more of a counter- rather than an anti-revolution, replicating in an inverted form the practices of the mature state socialist regimes. The paucity of institutional and intellectual innovation arising from 1989 is striking. The dominant motif was ‘returnism,’ the attempt to join an established enterprise rather than transforming it. Thus, 1989 can be seen as mimetic revolution, in the sense that it emulated systems that were not organically developed in the societies in which they were implanted. For Eastern Europe ‘returning’ to Europe appeared natural, but for Russia the civilizational challenge of post-communism was of an entirely different order. There could be no return, and instead of a linear transition outlined by the classic transitological literature, Russia’s post-communism demonstrated that the history of others could not be mechanically transplanted from one society to another

    Isolation, characterization and microincapsulation of neonatal porcine Sertoli cells obtained from a specific pathogen free (SPF) herd

    Get PDF
    Porcine Sertoli cells (pSC) have been successfully employed as cell therapy in pre-clinical studies of several immune-based and chronic degenerative diseases. In order to prevent any transmission of infectious adventitious agents to the cells graft recipients, we have set up, according to our previously described method (Luca et al., 2007) pSC monolayers obtained from specific pathogen free (SPF) certified neonatal pigs, born in the unique SPF colony in Italy. pSC were assessed and characterized as far as viability, by ethidium bromide and fluorescein diacetate (EB/FD), MĂźllerian inhibiting substance (AMH), and insulin-like 3 (INSL3), alpha-smooth muscle actin (ASMI) both by immunofluorescence (IF) and cytofluorimetric analysis (CA) were concerned. pSC were encapsulated in alginate microcapsules (MCpSC), with MCp- SC functional competence and biocompatibility being determined both in vitro, by AMH, inhibin B, TGF-beta, IGF-I secretion and in vivo in experimental animal models, respectively. Results demonstrated the high purity of our pSC monolayers (95% of AMH+cells), with negligible contamination by Leydig (2%) and peritubular cells (3%). Microencapsulation did not alter pSC viability and even after 4 months postimplantation, all the retrieved microcapsules retained morphology and function. In conclusion, we have uniquely obtained, from a SPF herd, highly purified, viable and functional pSC that might poten-tially apply to humans

    Thermostable Direct Hemolysin Downregulates Human Colon Carcinoma Cell Proliferation with the Involvement of E-Cadherin, and β-Catenin/Tcf-4 Signaling

    Get PDF
    BACKGROUND: Colon cancers are the frequent causes of cancer mortality worldwide. Recently bacterial toxins have received marked attention as promising approaches in the treatment of colon cancer. Thermostable direct hemolysin (TDH) secreted by Vibrio parahaemolyticus causes influx of extracellular calcium with the subsequent rise in intracellular calcium level in intestinal epithelial cells and it is known that calcium has antiproliferative activity against colon cancer. KEY RESULTS: In the present study it has been shown that TDH, a well-known traditional virulent factor inhibits proliferation of human colon carcinoma cells through the involvement of CaSR in its mechanism. TDH treatment does not induce DNA fragmentation, nor causes the release of lactate dehydrogenase. Therefore, apoptosis and cytotoxicity are not contributing to the TDH-mediated reduction of proliferation rate, and hence the reduction appears to be caused by decrease in cell proliferation. The elevation of E-cadherin, a cell adhesion molecule and suppression of β-catenin, a proto-oncogene have been observed in presence of CaSR agonists whereas reverse effect has been seen in presence of CaSR antagonist as well as si-RNA in TDH treated cells. TDH also triggers a significant reduction of Cyclin-D and cdk2, two important cell cycle regulatory proteins along with an up regulation of cell cycle inhibitory protein p27(Kip1) in presence of CaSR agonists. CONCLUSION: Therefore TDH can downregulate colonic carcinoma cell proliferation and involves CaSR in its mechanism of action. The downregulation occurs mainly through the involvement of E-cadherin-β-catenin mediated pathway and the inhibition of cell cycle regulators as well as upregulation of cell cycle inhibitors
    • …
    corecore