218 research outputs found

    Design study and evaluation of a multifuel engine for a space power system final report, 19 apr. - 4 jun. 1965

    Get PDF
    Evaluation testing of modified hypergolic ignition engine operating on gaseous hydrogen and oxyge

    Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements

    Get PDF
    ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP

    G-type antiferromagnetism and orbital ordering due to the crystal field from the rare-earth ions induced by the GdFeO_3-type distortion in RTiO_3 with R=La, Pr, Nd and Sm

    Full text link
    The origin of the antiferromagnetic order and puzzling properties of LaTiO_3 as well as the magnetic phase diagram of the perovskite titanates are studied theoretically. We show that in LaTiO_3, the t_{2g} degeneracy is eventually lifted by the La cations in the GdFeO_3-type structure, which generates a crystal field with nearly trigonal symmetry. This allows the description of the low-energy structure of LaTiO_3 by a single-band Hubbard model as a good starting point. The lowest-orbital occupation in this crystal field stabilizes the AFM(G) state, and well explains the spin-wave spectrum of LaTiO_3 obtained by the neutron scattering experiment. The orbital-spin structures for RTiO_3 with R=Pr, Nd and Sm are also accounted for by the same mechanism. We point out that through generating the R crystal field, the GdFeO_3-type distortion has a universal relevance in determining the orbital-spin structure of the perovskite compounds in competition with the Jahn-Teller mechanism, which has been overlooked in the literature. Since the GdFeO_3-type distortion is a universal phenomenon as is seen in a large number of perovskite compounds, this mechanism may also play important roles in other compounds of this type.Comment: 20 pages, 15 figure

    Students and academics working in partnership to embed cultural competence as a graduate quality

    Get PDF
    Since 2014, the University of Sydney has been experimenting with a new initiative motivated by the research on “students as partners”. In 2014, six students were selected as Ambassadors of the Sydney Teaching Colloquium (STC)-the University’s annual learning and teaching conference-as undergraduate researchers. In that year, the focus was on assessment standards

    Clinical Validation of Integrated Nucleic Acid and Protein Detection on an Electrochemical Biosensor Array for Urinary Tract Infection Diagnosis

    Get PDF
    BACKGROUND: Urinary tract infection (UTI) is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management. METHODOLOGY/PRINCIPAL FINDINGS: The integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both). CONCLUSION/SIGNIFICANCE: We successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for multiplexed detection of nucleic acid and protein as the next generation of urinary tract infection diagnostics

    Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib (IRESSA)

    Get PDF
    Gefitinib (IRESSA), an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, has antitumour activity in the advanced non-small-cell lung cancer (NSCLC) setting. However, in chemotherapy-naïve patients with advanced NSCLC, the addition of gefitinib to standard chemotherapy regimens failed to increase survival. These results suggest the need for improved patient selection and combination rationales for targeted therapies. We have identified subpopulations of an adenocarcinoma cell line that are naturally resistant to gefitinib, and have analysed the cDNA expression profiles, genomic status of EGFR gene and the effect of gefitinib on signalling pathways in these cell lines in order to identify key mechanisms for naturally acquired resistance to gefitinib. Gefitinib-resistant subpopulations demonstrated increased Akt phosphorylation (not inhibited by gefitinib), reduced PTEN protein expression and loss of the EGFR gene mutation when compared with parental cell lines. These differences in Akt and PTEN protein expression were not evident from the cDNA array profiles. These data suggests that (1) the EGFR gene mutation may be possibly lost in some cancer cells with other additional mechanisms for activating Akt, (2) reintroduction of PTEN or pharmacological downregulation of the constitutive PI3K–Akt-pathway activity may be an attractive therapeutic strategy in cancers with gefitinib resistance

    Activation of β-Catenin by Oncogenic PIK3CA and EGFR Promotes Resistance to Glucose Deprivation by Inducing a Strong Antioxidant Response

    Get PDF
    Glucose is an essential fuel for cell survival and its availability limits aberrant cellular proliferation. We have hypothesized that specific cancer mutations regulate metabolic response(s) to glucose deprivation (GD). By means of somatic knock-in cellular models, we have analyzed the response to glucose deprivation in cells carrying the frequent delE746-A750EGFR, G13DKRAS or E545KPIK3CA cancer alleles. We demonstrate that, in mammary epithelial cells, glucose has an essential antioxidant function and that these cells are very sensitive to GD. Conversely, isogenic cells carrying the delE746-A750EGFR or the E545KPIK3CA, but not the G13DKRAS allele, display high tolerance to GD by stimulating the expression of anti-oxidant genes (MnSOD and catalase). This adaptive transcriptional response is mediated by the activation of WNT/β-catenin and FOXO4 signalling. Our data highlights a new functional synergism between oncogenic EGFR and PIK3CA with WNT/β-catenin conferring high tolerance to oxidative stress generated by nutrient deprivation

    Epidermal growth factor mediates detachment from and invasion through collagen I and Matrigel in Capan-1 pancreatic cancer cells

    Get PDF
    BACKGROUND: Pancreatic adenocarcinoma is a highly invasive neoplasm. Epidermal growth factor (EGF) and its receptor are over expressed in pancreatic cancer, and expression correlates with invasion and metastasis. We hypothesized that EGF receptor and integrin signalling pathways interact in mediating cellular adhesion and invasion in pancreatic cancer, and that invasiveness correlates temporally with detachment from extracellular matrix. METHODS: We tested this hypothesis by investigating the role of EGF in mediating adhesion to and invasion through collagen I and Matrigel in the metastatic pancreatic adenocarcinoma cell line Capan-1. Adhesion and invasion were measured using in vitro assays of fluorescently-labeled cells. Adhesion and invasion assays were also performed in the primary pancreatic adenocarcinoma cell line MIA PaCa-2. RESULTS: EGF inhibited adhesion to collagen I and Matrigel in Capan-1 cells. The loss of adhesion was reversed by AG825, an inhibitor of erbB2 receptor signalling and by wortmannin, a PI3K inhibitor, but not by the protein synthesis inhibitor cycloheximide. EGF stimulated invasion through collagen I and Matrigel at concentrations and time courses similar to those mediating detachment from these extracellular matrix components. Adhesion to collagen I was different in MIA PaCa-2 cells, with no significant change elicited following EGF treatment, whereas treatment with the EGF family member heregulin-alpha elicited a marked increase in adhesion. Invasion through Matrigel in response to EGF, however, was similar to that observed in Capan-1 cells. CONCLUSION: An inverse relationship exists between adhesion and invasion capabilities in Capan-1 cells but not in MIA PaCa-2 cells. EGF receptor signalling involving the erbB2 and PI3K pathways plays a role in mediating these events in Capan-1 cells

    Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release

    Get PDF
    Colorectal carcinoma (CRC) is one of the most common causes of cancer-related mortality. Short-chain fatty acids secreted by dietary propionibacteria from the intestine, such as acetate, induce apoptosis in CRC cells and may therefore be relevant in CRC prevention and therapy. We previously reported that acetic acid-induced apoptosis in Saccharomyces cerevisiae cells involves partial vacuole permeabilization and release of Pep4p, the yeast cathepsin D (CatD), which has a protective role in this process. In cancer cells, lysosomes have emerged as key players in apoptosis through selective lysosomal membrane permeabilization (LMP) and release of cathepsins. However, the role of CatD in CRC survival is controversial and has not been assessed in response to acetate. We aimed to ascertain whether LMP and CatD are involved in acetate-induced apoptosis in CRC cells. We showed that acetate per se inhibits proliferation and induces apoptosis. More importantly, we uncovered that acetate triggers LMP and CatD release to the cytosol. Pepstatin A (a CatD inhibitor) but not E64d (a cathepsin B and L inhibitor) increased acetateinduced apoptosis of CRC cells, suggesting that CatD has a protective role in this process. Our data indicate that acetate induces LMP and subsequent release of CatD in CRC cells undergoing apoptosis, and suggest exploiting novel strategies using acetate as a prevention/therapeutic agent in CRC, through simultaneous treatment with CatD inhibitors.This work was supported by the Fundação para a Ciência e Tecnologia (FCT) research project PTDC/BIA-BCM/69448/2006 and FCT PhD grants for SA (SFRH/BD/64695/2009) and CO (SFRH/BD/77449/2011). This work was also supported by FEDER through POFC—COMPETE, and by national funds from FCT through the project PEst-C/BIA/UI4050/2011
    corecore