255 research outputs found

    Spiral Motion in a Noisy Complex Ginzburg-Landau Equation

    Full text link
    The response of spiral waves to external perturbations in a stable regime of the two-dimensional complex Ginzburg-Landau equation (CGLE) is investigated. It is shown that the spiral core has a finite mobility and performs Brownian motion when driven by white noise. Combined with simulation results, this suggests that defect-free and quasi-frozen states in the noiseless CGLE are unstable against free vortex excitation at any non-zero noise strength.Comment: RevTex, 4 pages, 3 figures, submitted to Phys. Rev. Let

    Interaction of Vortices in Complex Vector Field and Stability of a ``Vortex Molecule''

    Full text link
    We consider interaction of vortices in the vector complex Ginzburg--Landau equation (CVGLE). In the limit of small field coupling, it is found analytically that the interaction between well-separated defects in two different fields is long-range, in contrast to interaction between defects in the same field which falls off exponentially. In a certain region of parameters of CVGLE, we find stable rotating bound states of two defects -- a ``vortex molecule".Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Phase chaos in the anisotropic complex Ginzburg-Landau Equation

    Full text link
    Of the various interesting solutions found in the two-dimensional complex Ginzburg-Landau equation for anisotropic systems, the phase-chaotic states show particularly novel features. They exist in a broader parameter range than in the isotropic case, and often even broader than in one dimension. They typically represent the global attractor of the system. There exist two variants of phase chaos: a quasi-one dimensional and a two-dimensional solution. The transition to defect chaos is of intermittent type.Comment: 4 pages RevTeX, 5 figures, little changes in figures and references, typos removed, accepted as Rapid Commun. in Phys. Rev.

    One-dimensional asymmetrically coupled maps with defects

    Full text link
    In this letter we study chaotic dynamical properties of an asymmetrically coupled one-dimensional chain of maps. We discuss the existence of coherent regions in terms of the presence of defects along the chain. We find out that temporal chaos is instantaneously localized around one single defect and that the tangent vector jumps from one defect to another in an apparently random way. We quantitatively measure the localization properties by defining an entropy-like function in the space of tangent vectors.Comment: 9 pages + 4 figures TeX dialect: Plain TeX + IOP macros (included

    Vortex Glass and Vortex Liquid in Oscillatory Media

    Get PDF
    We study the disordered, multi-spiral solutions of two-dimensional homogeneous oscillatory media for parameter values at which the single spiral/vortex solution is fully stable. In the framework of the complex Ginzburg-Landau (CGLE) equation, we show that these states, heretofore believed to be static, actually evolve on ultra-slow timescales. This is achieved via a reduction of the CGLE to the evolution of the sole vortex position and phase coordinates. This true defect-mediated turbulence occurs in two distinct phases, a vortex liquid characterized by normal diffusion of individual spirals, and a slowly relaxing, intermittent, ``vortex glass''.Comment: 4 pages, 2 figures, submitted to Physical Review Letter

    Nonequilibrium dislocation dynamics and instability of driven vortex lattices in two dimensions

    Full text link
    We consider dislocations in a vortex lattice that is driven in a two-dimensional superconductor with random impurities. The structure and dynamics of dislocations is studied in this genuine nonequilibrium situation on the basis of a coarse-grained equation of motion for the displacement field. The presence of dislocations leads to a characteristic anisotropic distortion of the vortex density that is controlled by a Kardar-Parisi-Zhang nonlinearity in the coarse-grained equation of motion. This nonlinearity also implies a screening of the interaction between dislocations and thereby an instability of the vortex lattice to the proliferation of free dislocations.Comment: published version with minor correction

    Smooth and Non-Smooth Dependence of Lyapunov Vectors upon the Angle Variable on a Torus in the Context of Torus-Doubling Transitions in the Quasiperiodically Forced Henon Map

    Get PDF
    A transition from a smooth torus to a chaotic attractor in quasiperiodically forced dissipative systems may occur after a finite number of torus-doubling bifurcations. In this paper we investigate the underlying bifurcational mechanism which seems to be responsible for the termination of the torus-doubling cascades on the routes to chaos in invertible maps under external quasiperiodic forcing. We consider the structure of a vicinity of a smooth attracting invariant curve (torus) in the quasiperiodically forced Henon map and characterize it in terms of Lyapunov vectors, which determine directions of contraction for an element of phase space in a vicinity of the torus. When the dependence of the Lyapunov vectors upon the angle variable on the torus is smooth, regular torus-doubling bifurcation takes place. On the other hand, the onset of non-smooth dependence leads to a new phenomenon terminating the torus-doubling bifurcation line in the parameter space with the torus transforming directly into a strange nonchaotic attractor. We argue that the new phenomenon plays a key role in mechanisms of transition to chaos in quasiperiodically forced invertible dynamical systems.Comment: 24 pages, 9 figure

    Controlled Dynamics of Interfaces in a Vibrated Granular Layer

    Full text link
    We present experimental study of a topological excitation, {\it interface}, in a vertically vibrated layer of granular material. We show that these interfaces, separating regions of granular material oscillation with opposite phases, can be shifted and controlled by a very small amount of an additional subharmonic signal, mixed with the harmonic driving signal. The speed and the direction of interface motion depends sensitively on the phase and the amplitude of the subharmonic driving.Comment: 4 pages, 6 figures, RevTe

    Continuum theory of partially fluidized granular flows

    Full text link
    A continuum theory of partially fluidized granular flows is developed. The theory is based on a combination of the equations for the flow velocity and shear stresses coupled with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this theory to several important granular problems: avalanche flow in deep and shallow inclined layers, rotating drums and shear granular flows between two plates. We carry out quantitative comparisons between the theory and experiment.Comment: 28 pages, 23 figures, submitted to Phys. Rev.

    Velocity Distributions of Granular Gases with Drag and with Long-Range Interactions

    Full text link
    We study velocity statistics of electrostatically driven granular gases. For two different experiments: (i) non-magnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy tail is exponential, P(v) ~ exp(-|v|). This behavior is consistent with kinetic theory of driven dissipative particles. For particles immersed in a fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are sensitive to the fluid environment and to the form of the particle interaction.Comment: 4 pages, 3 figure
    • …
    corecore