723 research outputs found

    Electroweak scale neutrinos and decaying dark matter

    Get PDF
    We explore the scalar phenomenology of a model of electroweak scale neutrinos that incorporates the presence of a lepton number violating singlet scalar. An analysis of the pseudoscalar-Majoron field associated to this singlet field is carried out in order to verify the viability of the model and to restrict its parameter space. In particular we study the Majoron decay J→ννJ \to \nu \nu and use the bounds on the Majoron mass and width obtained in a modified Majoron Decaying Dark Matter scenario.Comment: 8 pages, 6 figures. A discussion on the invisible Higgs decay mode present in the model and some references were added . Version to appear in PL

    Frequency shift on the potential-dependent surface-enhanced Raman scattering of pyridine: simplified models for metal and solvent effects

    Get PDF
    The electronic structure of adsorbates is altered when it interacts with a surface, modifying the properties of both entities and giving rise to interesting phenomena related to heterogeneous catalysis or molecular electronics. If such surface is a metallic substrate, the electrode potential can be used to tune this interaction. Potential-dependent Surface-Enhanced Raman Scattering (SERS) is a particularly useful technique to study the induced effects on the molecule when the metal-adsorbate surface complex is formed, as the observed frequency shifts of the vibrational modes can provide information about it. However, from the computational point of view, these systems are difficult to model, because the macroscopic metal cannot be modelled easily using quantum mechanics. As an approach, we propose a simple model using silver atomic wires with different size and charge bonded to the molecule (AgnPyq, n = 2,3,5,7 and q = 0 and ±1 for n even and odd, respectively) which has been developed by the group and provides a good description of the effect of the electrode potential on the chemical enhancement mechanism of SERS.1-3 Electronic calculations were performed using Density Functional Theory (DFT). In order to study the frequency shifts, solvent effects have been taken into account by using the Polarizable Continuum Model (PCM). We have used three different functionals (B3LYP, PW91 and M06HF) and two basis sets (LANL2DZ for all atoms and LANL2DZ for Ag and 6-31G(d) for C,N,H) and, in all cases, a good agreement is achieved in terms of amplitude and trend of the frequency shift for most of the vibrational modes, especially when solvent interactions are included. The method was extended to other metals and solvents giving results in agreement with the available experimental data.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Capsaicin affects the structure and phase organization of phospholipid membranes

    Get PDF
    AbstractCapsaicin is a natural compound with pharmacological and toxicological effects, which given its hydrophobicity, can influence the structure of membranes. The interaction of capsaicin with model membranes of dipalmitoylphosphatidylcholine and dielaidoylphosphatidylethanolamine has been studied by using differential scanning calorimetry, fluorescent probe spectroscopy and 31P-nuclear magnetic resonance. Capsaicin remarkably affects the phase transition of dipalmitoylphosphatidylcholine, shifting the transition temperature to lower values, and giving rise, at relatively high capsaicin concentrations, to the appearance of two peaks in the thermogram. These peaks may correspond to separated phases as indicated by the partial phase diagram. Whereas capsaicin did not affect the fluorescence polarization of the probes diphenylhexatriene and trimethylammonium-diphenylhexatriene, it clearly affected that of the probe 2-anthroyloxystearic acid, indicating that the perturbation produced by capsaicin on the membrane would be mainly at the position where this fluorophore is located. On the other hand, capsaicin, at relatively low concentrations, gives rise to immiscible phases in the presence of dielaidoylphoshatidylethanolamine and decrease the temperature of the lamellar to hexagonal HII phase transition. At concentrations of capsaicin higher than 0.3 mol fraction, isotropic phases were detected. The possible implications of the effects of capsaicin on biological membranes are discussed

    Charge Transfer mechanism in the Surface Enhanced Raman Scattering of 2,2'-bipyridine recorded on a silver electrode

    Get PDF
    Nowadays, Surface Enhanced Raman Spectroscopy (SERS) has become a powerful technique to investigate the electronic structure of surface-molecule hybrid systems due to the huge enhancement of the Raman signal. It is established that the origin of this enhancement has two main contributions; the electromagnetic (EM), related to surface plasmons, and the chemical mechanism, due to resonant charge transfer (CT) processes between the adsorbate and the metal. With the aim to investigate the SERS-CT of bipyridine and to identify charge transfer process, the spectra were recorded on silver electrode by using three different wavelengths (473, 532 and 785 nm) in a range from 0.0 up to -1.4 V electrode potential. The electrode potential was modelled in the calculations with atomic silver wires of different size and charge attached to the BPy molecule (AgnBPyq, with q = 0 for n = 2 and q = ±1 for n = 3, 5, 7) and were computed with Density Functional Theory (DFT). Although BPy shows a trans conformation in solution, a cis conformation was chosen for its chelating properties. The results indicate that the intensification of the ~1550 cm-1 band at negative potentials is due the Franck-Condon factors related to the resonant CT process from the metal to the BPy molecule.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    An MS-CASPT2 Study of the Photodecomposition of 4- Methoxyphenyl Azide. Role of Internal Conversion and Intersystem Crossing

    Get PDF
    Aryl azides photochemistry is strongly dependent on the substituent relative position, as has been studied by time resolved resonant Raman (TR3) spectroscopy for 4-methoxyphenyl azide and its isomer 3-methoxyphenyl azide. When irradiated at 266 nm, the former results in 4,4’-dimethoxyazobenzene whereas the latter forms 1,2-didehydroazepine. It is proposed that the key step of the reactions is the formation of a nitrene derivative. Recently, it has been proposed by us that nitrenes might have a relevant role in the Surface-Enhanced Raman Scattering (SERS) of p-aminothiophenol, however, the molecular mechanism is not well known in neither of these cases. Therefore, we studied the photodecomposition of 4-methoxyphenyl azide using multiconfigurational self-consistent field methods (MC-SCF) with the CAS-SCF and MS-CASPT2 approximations and calculated the resonant Raman spectra of the relevant species using a multi-state version of Albrecht’s vibronic theory. The results propose that the reaction follows a two steps sequence after irradiation at 266 nm: an intersystem crossing 21A’/23A’’ which decays through a 21A’/21A’’ conical intersection producing molecular nitrogen and triplet 4-methoxyphenyl nitrene in its ground state.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Modeling the effect of the electrode potential in SERS by electronic structure calculations.

    Get PDF
    Surface Enhanced Raman Spectroscopy (SERS), due to the ability of greatly intensify the weak Raman signal of molecules adsorbed to metal surfaces, has proven to be a very useful tool to investigate changes in the electronic structure of metal-molecule surface complex. A deep knowledge of the electronic structure of these metal-molecule hybrid systems is key in electrochemistry, catalysis, plasmonics, molecular electronics, and in the development of selective and ultra-sensitive analytical sensors. The origin of this huge enhancement in SERS is due to two contributions: the electromagnetic (EM), related to surface plasmons, and the chemical mechanism, due to resonant charge transfer (CT) process between the adsorbate and the metal (CTSERS). Unfortunately, the SERS implies very complex phenomena where the molecule and the metal nanoparticle are involved. This fact makes challenging to build realistic theoretical models that take into account both the metal and the molecule at quantum level. We propose a methodology, based on DFT and ab initio electronic calculations, to simulate the effect of the electrode potential on the absorption, on the charge transfer states energies, and on the electronic excitations in metal-molecule hybrid systems from a microscopic point of view. This methodology consists on the prediction of Raman intensities from ab initio calculations of the geometries or the energy gradients at the excited states Franck-Condon point, bringing the possibility to predict the intensities in CTSERS as well as in resonance Raman without the need to know the excited state geometries, not always feasible to compute. The microscopic model adopted to mimic the effect of the interphase electric potential consist in a molecule adsorbed to a linear silver cluster [Agn-Adsorbate]q, were n is the number of silver atoms, and the total charge of the system (q) is zero for n=2 and q=±1 for n=1, 3 and 7.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore