27 research outputs found

    Peptides of the Constant Region of Antibodies Display Fungicidal Activity

    Get PDF
    Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents

    Studies of Immune Responses in Candida vaginitis

    No full text
    The widespread occurrence of vaginal candidiasis and the development of resistance against anti-fungal agents has stimulated interest in understanding the pathogenesis of this disease. The aim of our work was to characterize, in an animal model of vaginal candidiasis, the mechanisms that play a role in the induction of mucosal immunity against C. albicans and the interaction between innate and adaptive immunity. Our studies evidenced the elicitation of cell-mediated immunity (CMIs) and antibody (Abs)-mediated immunity with a Th1 protective immunity. An immune response of this magnitude in the vagina was very encouraging to identify the proper targets for new strategies for vaccination or immunotherapy of vaginal candidiasis. Overall, our data provide clear evidence that it is possible to prevent C. albicans vaginal infection by active intravaginal immunization with aspartyl proteinase expressed as recombinant protein. This opens the way to a modality for anti-Candida protection at the mucosa. The recombinant protein Sap2 was assembled with virosomes, and a vaccine PEVION7 (PEV7) was obtained. The results have given evidence that the vaccine, constituted of virosomes and Secretory aspartyl proteinase 2 (Sap2) (PEV7), has an encouraging therapeutic potential for the treatment of recurrent vulvovaginal candidiasis

    The <it>MP65 gene </it>is required for cell wall integrity, adherence to epithelial cells and biofilm formation in <it>Candida albicans</it>

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>MP65 </it>gene of <it>Candida albicans </it>(orf19.1779) encodes a putative β-glucanase mannoprotein of 65 kDa, which plays a main role in a host-fungus relationship, morphogenesis and pathogenicity. In this study, we performed an extensive analysis of a <it>mp65Δ </it>mutant to assess the role of this protein in cell wall integrity, adherence to epithelial cells and biofilm formation.</p> <p>Results</p> <p>The <it>mp65Δ </it>mutant showed a high sensitivity to a range of cell wall-perturbing and degrading agents, especially Congo red, which induced morphological changes such as swelling, clumping and formation of hyphae. The <it>mp65Δ </it>mutant showed an activation of two MAPKs (Mkc1p and Cek1p), a high level of expression of two stress-related genes (DDR48 and <it>SOD5</it>), and a modulated expression of β-glucan epitopes, but no gross changes in cell wall polysaccharide composition. Interestingly, the <it>mp65Δ </it>mutant displayed a marked reduction in adhesion to BEC and Caco-2 cells and severe defects in biofilm formation when compared to the wild type. All of the mentioned properties were totally or partially recovered in a revertant strain, demonstrating the specificity of gene deletion.</p> <p>Conclusions</p> <p>We demonstrate that the <it>MP65 </it>gene of <it>Candida albicans </it>plays a significant role in maintaining cell wall integrity, as well as in adherence to epithelia and biofilm formation, which are major virulence attributes of this fungus.</p

    Phenotypic and Functional Characterization of Vaginal Dendritic Cells in a Rat Model of Candida albicans Vaginitis

    No full text
    This study analyzes the phenotype of vaginal dendritic cells (VDCs), their antigenic presentation and activation of T-cell cytokine secretion, and their protective role in a rat model of Candida vaginitis. Histological observation demonstrated a significant accumulation of OX62(+) VDCs in the mucosal epithelium of Candida albicans-infected rats at the third round of infection. We identified two subsets of OX62(+) VDCs differing in the expression of CD4 molecule in both noninfected and Candida-infected rats. The OX62(+) CD4(+) subset of VDCs displayed a lymphoid cell-like morphology and expressed the T-cell antigen CD5, whereas the OX62(+) CD4(−) VDC subset exhibited a myeloid morphology and was CD5 negative. Candida infection resulted in VDC maturation with enhanced expression of CD80 and CD134L on both CD4(+) and CD4(−) VDC subsets at 2 and 6 weeks after Candida infection. CD5(−) CD4(−) CD86(−) CD80(−) CD134L(+) VDCs from infected, but not noninfected, rats spontaneously released large amounts of interleukin-12 (IL-12) and tumor necrosis factor alpha, whereas all VDC subsets released comparable levels of IL-10 and IL-2 cytokines. Furthermore, OX62(+) VDCs from infected rats primed naïve CD4(+) T-cell proliferation and release of cytokines, including gamma interferon, IL-2, IL-6, and IL-10, in response to staphylococcal enterotoxin B stimulation in vitro. Adoptive transfer of highly purified OX62(+) VDCs from infected rats induced a significant acceleration of fungal clearance compared with that in rats receiving naive VDCs, suggesting a protective role of VDCs in the anti-Candida mucosal immunity. Finally, VDC-mediated protection was associated with their ability to rapidly migrate to the vaginal mucosa and lymph nodes, as assessed by adoptive transfer of OX62(+) VDCs labeled with 5 (and 6-)-carboxyfluorescein diacetate succinimidyl ester

    Use of SCW4 gene primers in PCR methods for the identification of six medically important Aspergillus species

    No full text
    Aspergillus species are the cause of invasive mold infections in immunocompromised patients: Aspergillus fumigatus, A. flavus and A. terreus account for most cases of invasive aspergillosis (IA). As certain species are associated with higher mortality and vary in their resistance to antifungal therapy, diagnosis requires increasingly rapid molecular methods that enable sensitive detection and species discrimination. We have developed PCR and Multiplex PCR assays for the detection of six medically important Aspergillus spp. species DNA in bronchoalveolar lavage (BAL) specimens from hematology and intensive care unit (ICU) patients at risk of IA, using different species and genus-specific PCR primers, selected within the SCW4 gene, encoding a cell wall glucanase of A. fumigatus, similar to mannoprotein Mp65 of Candida albicans. The genus-specific PCR primers were able to amplify only Aspergillus DNAs but not that belonging to other fungal genera tested. The species-specific PCR primers allowed differentiation of each Aspergillus species by the amplicon length produced. The methods described in this study are rapid (less than 4 h), reproducible, simple and specific and demonstrate potential application in the clinical laboratory

    Bicyclic peptidomimetics targeting secreted aspartic protease 2 (SAP2) from Candida albicans reveal a constrained inhibitory chemotype

    No full text
    The in vitro screening of stereoisomeric bicyclic peptidomimetics towards SAP2 of Candida albicans revealed a constrained chemotype as aspartic protease inhibitor in the micromolar to nanomolar range. The results indicated that the acetal bridge may serve as a transition-state isostere, and that the right match between interactions with subsites and the orientation by hydrogen bonding with Gly85 is the main requisite for inhibitory activity. Molecular docking calculations suggested the bicyclic acetal scaffold to be capable of interacting with the two catalytic aspartic acids, thus resulting in good inhibitory activity with only two hydrophobic groups addressing the enzyme catalytic subsites
    corecore