17 research outputs found

    Clinical implications of the intrinsic molecular subtypes of breast cancer

    Get PDF
    AbstractGene-expression profiling has had a considerable impact on our understanding of breast cancer biology. During the last 15 years, 5 intrinsic molecular subtypes of breast cancer (Luminal A, Luminal B, HER2-enriched, Basal-like and Claudin-low) have been identified and intensively studied. In this review, we will focus on the current and future clinical implications of the intrinsic molecular subtypes beyond the current pathological-based classification endorsed by the 2013 St. Gallen Consensus Recommendations. Within hormone receptor-positive and HER2-negative early breast cancer, the Luminal A and B subtypes predict 10-year outcome regardless of systemic treatment administered as well as residual risk of distant recurrence after 5 years of endocrine therapy. Within clinically HER2-positive disease, the 4 main intrinsic subtypes can be identified and dominate the biological and clinical phenotype. From a clinical perspective, patients with HER2+/HER2-enriched disease seem to benefit the most from neoadjuvant trastuzumab, or dual HER2 blockade with trastuzumab/lapatinib, in combination with chemotherapy, and patients with HER2+/Luminal A disease seem to have a relative better outcome compared to the other subtypes. Finally, within triple-negative breast cancer (TNBC), the Basal-like disease predominates (70–80%) and, from a biological perspective, should be considered a cancer-type by itself. Importantly, the distinction between Basal-like versus non-Basal-like within TNBC might predict survival following (neo)adjvuvant multi-agent chemotherapy, bevacizumab benefit in the neoadjuvant setting (CALGB40603), and docetaxel vs. carboplatin benefit in first-line metastatic disease (TNT study). Overall, this data suggests that intrinsic molecular profiling provides clinically relevant information beyond current pathology-based classifications

    Frequency and Clinicopathological Profile Associated with Braf Mutations in Patients with Advanced Melanoma in Spain

    Get PDF
    Real-world data on BRAF mutation frequency in advanced melanoma are lacking in Spain. Moreover, data available on clinicopathological profile of patients with advanced BRAF-mutant melanoma are currently limited. This study aimed to assess the frequency of BRAF V600 mutations in Spanish patients with advanced or metastatic melanoma and to identify clinical and histopathological features associated with BRAF-mutated tumors. A multicenter, cross-sectional epidemiological study was conducted in 33 Spanish hospitals in adult patients with stage IIIc/IV melanoma. A total of 264 patients were included. The median age was 68 years and 57% were male. Melanoma mainly involved skin with intermittent (40.4%) and low or no sun exposure (43.5%). Most patients (85.6%) had stage IV disease (M1a: 19.3%; M1b: 13.3%; M1c: 22.7%). Serum lactate dehydrogenase levels were elevated in 20% of patients. Superficial spreading melanoma was the most frequent histological type (29.9%). Samples were predominantly obtained from metastases (62.7%), mostly from skin and soft tissues (80%). BRAF mutation analysis was primarily performed using the Cobas 4800 BRAF V600 Mutation Test (92.8%) on formalin-fixed, paraffin-embedded tissue (95.8%). BRAF mutations were detected in 41.3% of samples. Multivariate analysis identified age (odd ratio [OR] 0.975) and stage IV M1a (OR 2.716) as independent factors associated with BRAF mutation. The frequency of BRAF mutations in tumor samples from patients with advanced or metastatic melanoma in Spain was 41.3%. BRAF mutations seem to be more frequent in younger patients and stage M1a patients. This study provides the basis for further investigation regarding BRAF-mutated advanced melanoma in larger cohorts.This study was sponsored by Roche Farma S.A

    Response and survival of breast cancer intrinsic subtypes following multi-agent neoadjuvant chemotherapy.

    Get PDF
    Background Predicting treatment benefit and/or outcome before any therapeutic intervention has taken place would be clinically very useful. Herein, we evaluate the ability of the intrinsic subtypes and the risk of relapse score at diagnosis to predict survival and response following neoadjuvant chemotherapy. In addition, we evaluated the ability of the Claudin-low and 7-TNBCtype classifications to predict response within triple-negative breast cancer (TNBC). Methods Gene expression and clinical-pathological data were evaluated in a combined dataset of 957 breast cancer patients, including 350 with TNBC, treated with sequential anthracycline and anti-microtubule-based neoadjuvant regimens. Intrinsic subtype, risk of relapse score based on subtype and proliferation (ROR-P), the Claudin-low subtype and the 7-TNBCtype subtype classification were evaluated. Logistic regression models for pathological complete response (pCR) and Cox models for distant relapse-free survival (DRFS) were used. Results Basal-like, Luminal A, Luminal B, and HER2-enriched subtypes represented 32.7 %, 30.6 %, 18.2 %, and 10.3 % of cases, respectively. Intrinsic subtype was independently associated with pCR in all patients, in hormone receptor-positive/HER2-negative disease, in HER2-positive disease, and in TNBC. The pCR rate of Basal-like disease was >35 % across all clinical cohorts. Neither the Claudin-low nor the 7-TNBCtype subtype classifications predicted pCR within TNBCs after accounting for intrinsic subtype. Finally, intrinsic subtype and ROR-P provided independent prognostic information beyond clinicopathological variables and type of pathological response. A 5-year DRFS of 97.5 % (92.8-100.0 %) was observed in these neoadjuvant-treated and clinically node-negative patients predicted to be low risk by ROR-P (i.e. 57.4 % of Luminal A tumors with clinically node-negative disease). Conclusions Intrinsic subtyping at diagnosis provides prognostic and predictive information for patients receiving neoadjuvant chemotherapy. Although we could not exclude a survival benefit of neoadjuvant chemotherapy in patients with early breast cancer with clinically node-negative and ROR-low disease at diagnosis, the absolute benefit of cytotoxic therapy in this group might be rather small (if any)

    Frequency and Characteristics of familial melanoma in Spain: the FAM-GEM-1 Study.

    Get PDF
    Familial history of melanoma is a well-known risk factor for the disease, and 7% melanoma patients were reported to have a family history of melanoma. Data relating to the frequency and clinical and pathological characteristics of both familial and non-familial melanoma in Spain have been published, but these only include patients from specific areas of Spain and do not represent the data for the whole of Spain. PATIENTS AND METHODS: An observational study conducted by the Spanish Group of Melanoma (GEM) analyzed the family history of patients diagnosed with melanoma between 2011 and 2013 in the dermatology and oncology departments. RESULTS: In all, 1047 patients were analyzed, and 69 (6.6%) fulfilled criteria for classical familial melanoma (two or more first-degree relatives diagnosed with melanoma). Taking into account other risk factors for familial melanoma, such as multiple melanoma, pancreatic cancer in the family or second-degree relatives with melanoma, the number of patients fulfilling the criteria increased to 165 (15.8%). Using a univariate analysis, we determined that a Breslow index of less than 1 mm, negative mitosis, multiple melanoma, and a history of sunburns in childhood were more frequent in familial melanoma patients, but a multivariate analysis revealed no differences in any pathological or clinical factor between the two groups. CONCLUSIONS: Similar to that observed in other countries, familial melanoma accounts for 6.6% of melanoma diagnoses in Spain. Although no differences in the multivariate analysis were found, some better prognosis factors, such as Breslow index, seem more frequent in familial melanoma, which reflect a better early detection marker and/or a different biological behavior

    SEOM-GEINO clinical guideline of systemic therapy and management of brain central nervous system metastases (2021)

    No full text
    Central nervous system (CNS) dissemination is a severe complication in cancer and a leading cause of cancer-related mortality. Brain metastases (BMs) are the most common types of malignant intracranial tumors and are reported in approximately 25% of patients with metastatic cancers. The recent increase in incidence of BMs is due to several factors including better diagnostic assessments and the development of improved systemic therapies that have lower activity on the CNS. However, newer systemic therapies are being developed that can cross the blood-brain barrier giving us additional tools to treat BMs. The guidelines presented here focus on the efficacy of new targeted systemic therapies and immunotherapies on CNS BMs from breast, melanoma, and lung cancers

    Response and survival of breast cancer intrinsic subtypes following multi-agent neoadjuvant chemotherapy.

    No full text
    Background Predicting treatment benefit and/or outcome before any therapeutic intervention has taken place would be clinically very useful. Herein, we evaluate the ability of the intrinsic subtypes and the risk of relapse score at diagnosis to predict survival and response following neoadjuvant chemotherapy. In addition, we evaluated the ability of the Claudin-low and 7-TNBCtype classifications to predict response within triple-negative breast cancer (TNBC). Methods Gene expression and clinical-pathological data were evaluated in a combined dataset of 957 breast cancer patients, including 350 with TNBC, treated with sequential anthracycline and anti-microtubule-based neoadjuvant regimens. Intrinsic subtype, risk of relapse score based on subtype and proliferation (ROR-P), the Claudin-low subtype and the 7-TNBCtype subtype classification were evaluated. Logistic regression models for pathological complete response (pCR) and Cox models for distant relapse-free survival (DRFS) were used. Results Basal-like, Luminal A, Luminal B, and HER2-enriched subtypes represented 32.7 %, 30.6 %, 18.2 %, and 10.3 % of cases, respectively. Intrinsic subtype was independently associated with pCR in all patients, in hormone receptor-positive/HER2-negative disease, in HER2-positive disease, and in TNBC. The pCR rate of Basal-like disease was >35 % across all clinical cohorts. Neither the Claudin-low nor the 7-TNBCtype subtype classifications predicted pCR within TNBCs after accounting for intrinsic subtype. Finally, intrinsic subtype and ROR-P provided independent prognostic information beyond clinicopathological variables and type of pathological response. A 5-year DRFS of 97.5 % (92.8-100.0 %) was observed in these neoadjuvant-treated and clinically node-negative patients predicted to be low risk by ROR-P (i.e. 57.4 % of Luminal A tumors with clinically node-negative disease). Conclusions Intrinsic subtyping at diagnosis provides prognostic and predictive information for patients receiving neoadjuvant chemotherapy. Although we could not exclude a survival benefit of neoadjuvant chemotherapy in patients with early breast cancer with clinically node-negative and ROR-low disease at diagnosis, the absolute benefit of cytotoxic therapy in this group might be rather small (if any)

    Additional file 1: Table S1. of Response and survival of breast cancer intrinsic subtypes following multi-agent neoadjuvant chemotherapy

    No full text
    Cox model DRFS analyses including intrinsic subtype in all patients from the MDACC-based cohort (GSE25066). Table S2. Cox model DRFS analyses including ROR-P in all patients from the MDACC-based cohort (GSE25066). Table S3. Cox model DRFS analyses including intrinsic subtype in patients that achieved a pCR from the MDACC-based cohort (GSE25066). Table S4. Cox model DRFS analyses including ROR-P in patients that achieved a pCR from the MDACC-based cohort (GSE25066). Table S5. Cox model DRFS analyses including ROR-P in patients with residual disease from the MDACC-based cohort (GSE25066). Table S6. Distribution of the PAM50 subtypes within the TNBCtype groups and vice versa. Table S7. Association of the TNBCtype subtypes with chemotherapy response in triple-negative breast cancer. Figure S1. CONSORT diagram of the various cohorts evaluated in this study. Figure S2. Kaplan-Meier distant relapse-free survival analysis in MDACC-based (GSE25066 [13]) dataset set. (A) Survival outcomes of the ROR-P groups in all patients. (B) Survival outcomes of the ROR-P groups in patients with clinically node-negative disease. Figure S3. Levels of ESR1 across TNBCtype ESR1-low group, TNBCtype ESR1-high group and ER+ group. Median expression of ESR1 in the PAM50 training dataset reported in Parker et al. [24] has been set to zero. Figure S4. Distribution of the TNBCtype subtypes and ESR1-high group within the PAM50 subtypes in TNBC. Figure S5. Distribution of the TNBCtype subtypes and ESR1-high group within the PAM50 + Claudin-low subtypes in TNBC. Figure S6. Training and testing gene expression-based models predictive of pCR in all patients. Figure S7. Training and testing gene expression-based models predictive of pCR in patients with Basal-like disease. Figure S8. Training and testing gene expression-based models predictive of pCR in patients with luminal (A/B) disease. (DOCX 819 kb
    corecore