72 research outputs found
Connectivity, neutral theories and the assessment of species vulnerability to global change in temperate estuaries
One of the main adaptation strategies to global change scenarios, aiming to preserve ecosystem functioning and biodiversity, is to maximise ecosystem resilience. The resilience of a species metapopulation can be improved by facilitating connectivity between local populations, which will prevent demographic stochasticity and inbreeding. The objective of this investigation is to estimate the degree of connectivity among estuarine species along the north-eastern Iberian coast, in order to assess community vulnerability to global change scenarios. To address this objective, two connectivity proxy types have been used based upon genetic and ecological drift processes: 1) DNA markers for the bivalve cockle (Cerastoderma edule) and seagrass Zostera noltei, and 2) the decrease in the number of species shared between two sites with geographic distance; neutral biodiversity theory predicts that dispersal limitation modulates this decrease, and this has been explored in estuarine plants and macroinvertebrates. Results indicate dispersal limitation for both saltmarsh plants and seagrass beds community and Z. noltei populations; this suggests they are especially vulnerable to expected climate changes on their habitats. In contrast, unstructured spatial pattern found in macroinvertebrate communities and in C. edule genetic populations in the area suggests that estuarine soft-bottom macroinvertebrates with planktonic larval dispersal strategies may have a high resilience capacity to moderate changes within their habitats. Our findings can help environmental managers to prioritise the most vulnerable species and habitats to be restored
Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain
Current knowledge of the evolution of the postcranial skeleton in the genus Homo is hampered by a geographically and chronologically scattered fossil record. Here we present a complete characterization of the postcranium of the middle Pleistocene paleodeme from the Sima de los Huesos (SH) and its paleobiological implications. The SH hominins show the following: (i) wide bodies, a plesiomorphic char- acter in the genus Homo inherited from their early hominin ancestors; (ii) statures that can be found in modern human middle-latitude pop- ulations that first appeared 1.6–1.5 Mya; and (iii) large femoral heads in some individuals, a trait that first appeared during the middle Pleistocene in Africa and Europe. The intrapopulational size variation in SH shows that the level of dimorphism was similar to modern humans (MH), but the SH hominins were less encephalized than Ne- andertals. SH shares many postcranial anatomical features with Ne- andertals. Although most of these features appear to be either plesiomorphic retentions or are of uncertain phylogenetic polarity, a few represent Neandertal apomorphies. Nevertheless, the full suite of Neandertal-derived features is not yet present in the SH popula- tion. The postcranial evidence is consistent with the hypothesis based on the cranial morphology that the SH hominins are a sister group to the later Neandertals. Comparison of the SH postcranial skeleton to other hominins suggests that the evolution of the postcranium oc- curred in a mosaic mode, both at a general and at a detailed level
The dynamic use of EGFR mutation analysis in cell-free DNA as a follow-up biomarker during different treatment lines in non-small-cell lung cancer patients
Epidermal growth factor receptor (EGFR) mutational testing in advanced non-small-cell lung cancer (NSCLC) is usually performed
in tumor tissue, although cfDNA (cell-free DNA) could be an alternative. We evaluated EGFR mutations in cfDNA as a
complementary tool in patients, who had already known EGFR mutations in tumor tissue and were treated with either
EGFR-tyrosine kinase inhibitors (TKIs) or chemotherapy. We obtained plasma samples from 21 advanced NSCLC patients with
known EGFR tumor mutations, before and during therapy with EGFR-TKIs and/or chemotherapy. cfDNA was isolated and
EGFR mutations were analyzed with the multiple targeted cobas EGFR Mutation Test v2. EGFR mutations were detected at
baseline in cfDNA from 57% of patients. The semiquantitative index (SQI) significantly decreased from the baseline
(median = 11, IQR = 9 5-13) to the best response (median = 0, IQR = 0-0, p < 0 01), followed by a significant increase at
progression (median = 11, IQR = 11-15, p < 0 01) in patients treated with either EGFR-TKIs or chemotherapy. The SQI obtained
with the cobas EGFR Mutation Test v2 did not correlate with the concentration in copies/mL determined by droplet digital
PCR. Resistance mutation p.T790M was observed at progression in patients with either type of treatment. In conclusion, cfDNA
multiple targeted EGFR mutation analysis is useful for treatment monitoring in tissue of EGFR-positive NSCLC patients
independently of the drug received
Demonstration of event position reconstruction based on diffusion in the NEXT-white detector
[EN] Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from Kr-83m calibration electron captures (E similar to 45 keV), the position of origin of low-energy events is determined to 2 cm precision with bias = 1.5 MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q(beta beta) in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under Grant Agreement No. 951281-BOLD; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under Grant Agreement No. 957202-HIDDEN; the MCIN/AEI of Spain and ERDF A way of making Europe under grants PID2021-125475NB and the Severo Ochoa Program grant CEX2018-000867-S; the Generalitat Valenciana of Spain under grants PROMETEO/2021/087 and CIDEGENT/2019/049; the Department of Education of the Basque Government of Spain under the predoctoral training program non-doctoral research personnel; the Spanish la Caixa Foundation (ID 100010434) under fellowship code LCF/BQ/PI22/11910019; the Portuguese FCT under project UID/FIS/04559/2020 to fund the activities of LIBPhys-UC; the Israel Science Foundation (ISF) under grant 1223/21; the Pazy Foundation (Israel) under grants 310/22, 315/19 and 465; the US Department of Energy under contracts number DE-AC02-06CH11357 (Argonne National Laboratory), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A &M), DE-SC0019054 (Texas Arlington) and DE-SC0019223 (Texas Arlington); the US National Science Foundation under award number NSF CHE 2004111; the Robert A Welch Foundation under award number Y-2031-20200401.Haefner, J.; Navarro, K.; Guenette, R.; Jones, B.; Tripathi, A.; Adams, C.; Almazán, H.... (2024). Demonstration of event position reconstruction based on diffusion in the NEXT-white detector. The European Physical Journal C. 84(5). https://doi.org/10.1140/epjc/s10052-024-12865-984
Measurement of the Xe 136 two-neutrino double -decay half-life via direct background subtraction in NEXT
[EN] We report a measurement of the half-life of the 136Xe two-neutrino double-ß decay performed with a novel
direct-background-subtraction technique. The analysis relies on the data collected with the NEXT-White detector
operated with 136Xe-enriched and 136Xe-depleted xenon, as well as on the topology of double-electron tracks.
With a fiducial mass of only 3.5 kg of Xe, a half-life of 2.34+0.80(stat)+0.30(sys)×1021 yr is derived from ¿0.46 ¿0.17
the background-subtracted energy spectrum. The presented technique demonstrates the feasibility of unique background-model-independent neutrinoless double-ß-decay searches.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under Grant No. 951281-BOLD; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under Grant No. 957202-HIDDEN; the MCIN/AEI/10.13039/501100011033 of Spain and ERDF "A way of making Europe" under Grant No. RTI2018-095979, the Severo Ochoa Program Grant No. CEX2018-000867-S, and the Maria de Maeztu Program Grant No. MDM-2016-0692; the Generalitat Valenciana of Spain under Grants No. PROMETEO/2021/087 and No. CIDEGENT/2019/049; the Portuguese FCT under Project No. UID/FIS/04559/2020 to fund the activities of LIBPhys-UC; the Pazy Foundation (Israel) under Grants No. 877040 and No. 877041; the U.S. Department of Energy under Contracts No. DE-AC02-06CH11357 (Argonne National Laboratory), No. DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), No. DE-FG02-13ER42020 (Texas A&M), No. DE-SC0019054 (Texas Arlington), and No. DE-SC0019223 (Arlington, TX); the U.S. National Science Foundation under Grant No. CHE 2004111; and the Robert A. Welch Foundation under Grant No. Y-203120200401. D.G.D. acknowledges support from the Ramon y Cajal program (Spain) under Contract No. RYC-2015-18820. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment.Novella, P.; Sorel, M.; Usón, A.; Adams, C.; Almazán, H.; Álvarez-Puerta, V.; Aparicio, B.... (2022). Measurement of the Xe 136 two-neutrino double -decay half-life via direct background subtraction in NEXT. Physical Review C (Online). 105(5):055501-1-055501-8. https://doi.org/10.1103/PhysRevC.105.055501055501-1055501-8105
NEXT-CRAB-0: A High Pressure Gaseous Xenon Time Projection Chamber with a Direct VUV Camera Based Readout
The search for neutrinoless double beta decay () remains one
of the most compelling experimental avenues for the discovery in the neutrino
sector. Electroluminescent gas-phase time projection chambers are well suited
to searches due to their intrinsically precise energy
resolution and topological event identification capabilities. Scalability to
ton- and multi-ton masses requires readout of large-area electroluminescent
regions with fine spatial resolution, low radiogenic backgrounds, and a
scalable data acquisition system. This paper presents a detector prototype that
records event topology in an electroluminescent xenon gas TPC via VUV
image-intensified cameras. This enables an extendable readout of large tracking
planes with commercial devices that reside almost entirely outside of the
active medium.Following further development in intermediate scale
demonstrators, this technique may represent a novel and enlargeable method for
topological event imaging in .Comment: 32 Pages, 22 figure
Design, characterization and installation of the NEXT-100 cathode and electroluminescence regions
NEXT-100 is currently being constructed at the Laboratorio Subterr\'aneo de
Canfranc in the Spanish Pyrenees and will search for neutrinoless double beta
decay using a high-pressure gaseous time projection chamber (TPC) with 100 kg
of xenon. Charge amplification is carried out via electroluminescence (EL)
which is the process of accelerating electrons in a high electric field region
causing secondary scintillation of the medium proportional to the initial
charge. The NEXT-100 EL and cathode regions are made from tensioned hexagonal
meshes of 1 m diameter. This paper describes the design, characterization, and
installation of these parts for NEXT-100. Simulations of the electric field are
performed to model the drift and amplification of ionization electrons produced
in the detector under various EL region alignments and rotations. Measurements
of the electrostatic breakdown voltage in air characterize performance under
high voltage conditions and identify breakdown points. The electrostatic
deflection of the mesh is quantified and fit to a first-principles mechanical
model. Measurements were performed with both a standalone test EL region and
with the NEXT-100 EL region before its installation in the detector. Finally,
we describe the parts as installed in NEXT-100, following their deployment in
Summer 2023.Comment: 35 pages, 25 Figures, update includes accepted version in JINS
Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution
Next-generation neutrinoless double beta decay experiments aim for half-life
sensitivities of ~ yr, requiring suppressing backgrounds to <1
count/tonne/yr. For this, any extra background rejection handle, beyond
excellent energy resolution and the use of extremely radiopure materials, is of
utmost importance. The NEXT experiment exploits differences in the spatial
ionization patterns of double beta decay and single-electron events to
discriminate signal from background. While the former display two Bragg peak
dense ionization regions at the opposite ends of the track, the latter
typically have only one such feature. Thus, comparing the energies at the track
extremes provides an additional rejection tool. The unique combination of the
topology-based background discrimination and excellent energy resolution (1%
FWHM at the Q-value of the decay) is the distinguishing feature of NEXT.
Previous studies demonstrated a topological background rejection factor of ~5
when reconstructing electron-positron pairs in the Tl 1.6 MeV double
escape peak (with Compton events as background), recorded in the NEXT-White
demonstrator at the Laboratorio Subterr\'aneo de Canfranc, with 72% signal
efficiency. This was recently improved through the use of a deep convolutional
neural network to yield a background rejection factor of ~10 with 65% signal
efficiency. Here, we present a new reconstruction method, based on the
Richardson-Lucy deconvolution algorithm, which allows reversing the blurring
induced by electron diffusion and electroluminescence light production in the
NEXT TPC. The new method yields highly refined 3D images of reconstructed
events, and, as a result, significantly improves the topological background
discrimination. When applied to real-data 1.6 MeV pairs, it leads to a
background rejection factor of 27 at 57% signal efficiency.Comment: Submitted to JHE
Ba+2 ion trapping using organic submonolayer for ultra-low background neutrinoless double beta detector
If neutrinos are their own antiparticles the otherwise-forbidden nuclear reaction known as neutrinoless double beta decay can occur. The very long lifetime expected for these exceptional events makes its detection a daunting task. In order to conduct an almost background-free experiment, the NEXT collaboration is investigating novel synthetic molecular sensors that may capture the Ba dication produced in the decay of certain Xe isotopes in a high-pressure gas experiment. The use of such molecular detectors immobilized on surfaces must be explored in the ultra-dry environment of a xenon gas chamber. Here, using a combination of highly sensitive surface science techniques in ultra-high vacuum, we demonstrate the possibility of employing the so-called Fluorescent Bicolor Indicator as the molecular component of the sensor. We unravel the ion capture process for these molecular indicators immobilized on a surface and explain the origin of the emission fluorescence shift associated to the ion trapping
- …