7 research outputs found

    Wet-spinnability and crosslinked fibre properties of two collagen polypeptides with varied molecular weight

    Get PDF
    The formation of naturally-derived materials with wet stable fibrous architectures is paramount in order to mimic the features of tissues at the molecular and microscopic scale. Here, we investigated the formation of wet-spun fibres based on collagen-derived polypeptides with comparable chemical composition and varied molecular weight. Gelatin and hydrolysed fish collagen (HFC) were selected as widely-available linear amino-acidic chains of high and low molecular weight, respectively, and functionalised in the wet-spun fibre state in order to preserve the material geometry in physiological conditions. Wet-spun fibre diameter and morphology were dramatically affected depending on the polypeptide molecular weight, wet-spinning solvent (i.e. 2,2,2-Trifluoroethanol and dimethyl sulfoxide) and coagulating medium (i.e. acetone and ethanol), resulting in either bulky or porous internal geometry. Dry-state tensile moduli were significantly enhanced in gelatin and HFC samples following covalent crosslinking with activated 1,3-phenylenediacetic acid (Ph) (E: 726 ± 43 ‒ 844 ± 85 MPa), compared to samples crosslinked via intramolecular carbodiimide-mediated condensation reaction (E: 588 ± 38 MPa). Resulting fibres displayed a dry diameter in the range of 238±18–355±28 μm and proved to be mechanically-stable (E: 230 kPa) following equilibration with PBS, whilst a nearly-complete degradation was observed after 5-day incubation in physiological conditions

    Chitosan-Stabilized CuO Nanostructure-Functionalized UV-Crosslinked PVA/Chitosan Electrospun Membrane as Enhanced Wound Dressing

    No full text
    Electrospun nanofibrous membranes are of great interest for tissue engineering, active material delivery, and wound dressing. These nanofibers possess unique three-dimensional (3D) interconnected porous structures that result in a higher surface-area-to-volume ratio and porosity. This study was carried out to prepare nanofibrous membranes by electrospinning a blend of PVA/chitosan polymeric solution functionalized with different ratios of copper oxide. Chitosan-stabilized CuO nanoparticles (CH-CuO NPs) were biosynthesized successfully utilizing chitosan as the capping and reducing agent. XRD analysis confirmed the monoclinic structure of CH-CuO NPs. In addition, the electrospun nanofibrous membranes were UV-crosslinked for a definite time. The membranes containing CH-CuO NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) spectrophotometry, and dynamic light scattering (DLS). SEM results showed the nanosize of the fiber diameter in the range of 147–207 nm. The FTIR spectroscopy results indicated the successful incorporation of CH-CuO NPs into the PVA/chitosan nanofibrous membranes. DSC analysis proved the enhanced thermal stability of the nanofibrous membranes due to UV-crosslinking. Swelling and degradation tests were carried out to ensure membrane stability. Greater antimicrobial activity was observed in the nanoparticle-loaded membrane. An in vitro release study of Cu2+ ions from the membrane was carried out for 24 h. The cytotoxicity of CH-CuO NP-incorporated membranes was investigated to estimate the safe dose of nanoparticles. An in vivo test using the CH-CuO NP-loaded PVA/chitosan membrane was conducted on a mice model, in which wound healing occurred in approximately 12 days. These results confirmed that the biocompatible, nontoxic nanofibrous membranes are ideal for wound-dressing applications
    corecore