15 research outputs found

    A new MR-SAD algorithm for the automatic building of protein models from low-resolution X-ray data and a poor starting model

    Get PDF
    Determining macromolecular structures from X-ray data with resolution worse than 3 Å remains a challenge. Even if a related starting model is available, its incompleteness or its bias together with a low observation-to-parameter ratio can render the process unsuccessful or very time-consuming. Yet, many biologically important macromolecules, especially large macromolecular assemblies, membrane proteins and receptors, tend to provide crystals that diffract to low resolution. A new algorithm to tackle this problem is presented that uses a multivariate function to simultaneously exploit information from both an initial partial model and low-resolution single-wavelength anomalous diffraction data. The new approach has been used for six challenging structure determinations, including the crystal structures of membrane proteins and macromolecular complexes that have evaded experts using other methods, and large structures from a 3.0 Å resolution F1-ATPase data set and a 4.5 Å resolution SecYEG–SecA complex data set. All of the models were automatically built by the method to Rfree values of between 28.9 and 39.9% and were free from the initial model bias

    Adhesion Class GPCRs (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Adhesion GPCRs are structurally identified on the basis of a large extracellular region, similar to the Class B GPCR, but which is linked to the 7TM region by a GPCR autoproteolysis-inducing (GAIN) domain [8] containing a GPCR proteolytic site. The N-terminus often shares structural homology with adhesive domains (e.g. cadherins, immunolobulin, lectins) facilitating inter- and matricellular interactions and leading to the term adhesion GPCR [82, 332]. Several receptors have been suggested to function as mechanosensors [254, 234, 315, 32]. The nomenclature of these receptors was revised in 2015 as recommended by NC-IUPHAR and the Adhesion GPCR Consortium [100]

    Adhesion Class GPCRs in GtoPdb v.2023.1

    Get PDF
    Adhesion GPCRs are structurally identified on the basis of a large extracellular region, similar to the Class B GPCR, but which is linked to the 7TM region by a GPCR autoproteolysis-inducing (GAIN) domain [10] containing a GPCR proteolysis site (GPS). The N-terminal extracellular region often shares structural homology with adhesive domains (e.g. cadherins, immunolobulin, lectins) facilitating inter- and matricellular interactions and leading to the term adhesion GPCR [104, 418]. Several receptors have been suggested to function as mechanosensors [320, 288, 396, 38]. Cryo-EM structures of the 7-transmembrane domain of several adhesion GPCRs have been determined recently [292, 21, 403, 212, 300, 302, 431, 293]. The nomenclature of these receptors was revised in 2015 as recommended by NC-IUPHAR and the Adhesion GPCR Consortium [125]

    Adhesion Class GPCRs in GtoPdb v.2021.3

    Get PDF
    Adhesion GPCRs are structurally identified on the basis of a large extracellular region, similar to the Class B GPCR, but which is linked to the 7TM region by a GPCR autoproteolysis-inducing (GAIN) domain [9] containing a GPCR proteolytic site. The N-terminus often shares structural homology with adhesive domains (e.g. cadherins, immunolobulin, lectins) facilitating inter- and matricellular interactions and leading to the term adhesion GPCR [101, 403]. Several receptors have been suggested to function as mechanosensors [309, 280, 383, 35]. The nomenclature of these receptors was revised in 2015 as recommended by NC-IUPHAR and the Adhesion GPCR Consortium [122]

    NMR Structures of the Selenoproteins Sep15 and SelM Reveal Redox Activity of a New Thioredoxin-like Family

    Get PDF
    Selenium has significant health benefits, including potent cancer prevention activity and roles in immune function and the male reproductive system. Selenium-containing proteins, which incorporate this essential micronutrient as selenocysteine, are proposed to mediate the positive effects of dietary selenium. Presented here are the solution NMR structures of the selenoprotein SelM and an ortholog of the selenoprotein Sep15. These data reveal that Sep15 and SelM are structural homologs that establish a new thioredoxinlike protein family. The location of the active-site redox motifs within the fold together with the observed localized conformational changes after thiol-disulfide exchange and measured redox potential indicate that they have redox activity. In mammals, Sep15 expression is regulated by dietary selenium, and either decreased or increased expression of this selenoprotein alters redox homeostasis. A physiological role for Sep15 and SelM as thiol-disulfide oxidoreductases and their contribution to the quality control pathways of the endoplasmic reticulum are discussed

    The C 2

    No full text

    On the Role of αThr183 in the Allosteric Regulation and Catalytic Mechanism of Tryptophan Synthase

    No full text
    The catalytic activity and substrate channeling of the pyridoxal 5-phosphate-dependent tryptophan synthase α 2β 2 complex is regulated by allosteric interactions that modulate the switching of the enzyme between open, low activity and closed, high activity states during the catalytic cycle. The highly conserved αThr183 residue is part of loop αL6 and is located next to the α-active site and forms part of the α–β subunit interface. The role of the interactions of αThr183 in α-site catalysis and allosteric regulation was investigated by analyzing the kinetics and crystal structures of the isosteric mutant αThr183Val. The mutant displays strongly impaired allosteric α–β communication, and the catalytic activity of the α-reaction is reduced one hundred fold, whereas the β-activity is not affected. The structural work establishes that the basis for the missing inter-subunit signaling is the lack of loop αL6 closure even in the presence of the α-subunit ligands, 3-indolyl- -glycerol 3-phosphate, or 3-indolylpropanol 3-phosphate. The structural basis for the reduced α-activity has its origins in the missing hydrogen bond between αThr183 and the catalytic residue, αAsp60

    An integrated genetic, radiation hybrid, physical and transcription map of a region of distal mouse chromosome 12, including an imprinted locus and the `Legs at odd angles¿ (Loa) mutation

    No full text
    A variety of loci with interesting patterns of regulation such as imprinted expression, and critical functions such as involvement in tumour necrosis factor pathways, map to a distal portion of mouse chromosome 12. This region also contains disease related loci including the 'Legs at odd angles' mutation (Loa) that we are pursuing in a positional cloning project. To further define the region and prepare for comparative sequencing projects, we have produced genetic, radiation hybrid, physical and transcript maps of the region, with probes providing anchors between the maps. We show a summary of 95 markers and 91 genomic clones that has enabled us to identify 18 transcripts including new genes and candidates for Loa which will help in future studies of gene context and regulation

    A new mouse mutant, skijumper

    No full text
    Low blood sugar levels are a well-known cause of severe illness and often death in newborn humans, especially those that are small for age. Few of the causes of neonatal hypoglycemia are known, and many remain to be found. We describe a novel mouse mutant, skijumper (skimp), in which pups, despite feeding well, have low levels of glucose and develop opisthotonos, followed by death typically within a few days after birth. Genetic mapping studies have localized the lesion to a approximately 1 cM interval on mouse Chromosome (Chr) 7 between D7Mit318 and D7Mit93. We have carried out extensive analysis to define the phenotype and its likely cause. In addition to low blood glucose, affected skijumper mice have lowglycogen and ketone levels. Mass spectrometric analysis of blood samples has excluded major defects in amino acid metabolism. Initial biochemical analyses suggested a defect in ketogenesis as one possible cause of this phenotype. However, measurements of levels and activities of carnitine, carnitine palmitoyl transferases, and other enzymes involved in ketogenesis, along with studies of mitochondrial structure and function, did not demonstrate significant differences between skijumper, unaffected littermates, and control wild-type mice. These results indicate that abnormal enzyme activity in known pathways does not appear to be the primary biochemical lesion in skijumper. The skijumper may be a new valuable model for studying and understanding one type of neonatal morbidity and death
    corecore