4 research outputs found

    Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis.

    Get PDF
    BACKGROUND: Yellow fever cases are under-reported and the exact distribution of the disease is unknown. An effective vaccine is available but more information is needed about which populations within risk zones should be targeted to implement interventions. Substantial outbreaks of yellow fever in Angola, Democratic Republic of the Congo, and Brazil, coupled with the global expansion of the range of its main urban vector, Aedes aegypti, suggest that yellow fever has the propensity to spread further internationally. The aim of this study was to estimate the disease's contemporary distribution and potential for spread into new areas to help inform optimal control and prevention strategies. METHODS: We assembled 1155 geographical records of yellow fever virus infection in people from 1970 to 2016. We used a Poisson point process boosted regression tree model that explicitly incorporated environmental and biological explanatory covariates, vaccination coverage, and spatial variability in disease reporting rates to predict the relative risk of apparent yellow fever virus infection at a 5 × 5 km resolution across all risk zones (47 countries across the Americas and Africa). We also used the fitted model to predict the receptivity of areas outside at-risk zones to the introduction or reintroduction of yellow fever transmission. By use of previously published estimates of annual national case numbers, we used the model to map subnational variation in incidence of yellow fever across at-risk countries and to estimate the number of cases averted by vaccination worldwide. FINDINGS: Substantial international and subnational spatial variation exists in relative risk and incidence of yellow fever as well as varied success of vaccination in reducing incidence in several high-risk regions, including Brazil, Cameroon, and Togo. Areas with the highest predicted average annual case numbers include large parts of Nigeria, the Democratic Republic of the Congo, and South Sudan, where vaccination coverage in 2016 was estimated to be substantially less than the recommended threshold to prevent outbreaks. Overall, we estimated that vaccination coverage levels achieved by 2016 avert between 94 336 and 118 500 cases of yellow fever annually within risk zones, on the basis of conservative and optimistic vaccination scenarios. The areas outside at-risk regions with predicted high receptivity to yellow fever transmission (eg, parts of Malaysia, Indonesia, and Thailand) were less extensive than the distribution of the main urban vector, A aegypti, with low receptivity to yellow fever transmission in southern China, where A aegypti is known to occur. INTERPRETATION: Our results provide the evidence base for targeting vaccination campaigns within risk zones, as well as emphasising their high effectiveness. Our study highlights areas where public health authorities should be most vigilant for potential spread or importation events. FUNDING: Bill & Melinda Gates Foundation

    Global yellow fever vaccination coverage from 1970 to 2016: an adjusted retrospective analysis.

    Get PDF
    BACKGROUND: Substantial outbreaks of yellow fever in Angola and Brazil in the past 2 years, combined with global shortages in vaccine stockpiles, highlight a pressing need to assess present control strategies. The aims of this study were to estimate global yellow fever vaccination coverage from 1970 through to 2016 at high spatial resolution and to calculate the number of individuals still requiring vaccination to reach population coverage thresholds for outbreak prevention. METHODS: For this adjusted retrospective analysis, we compiled data from a range of sources (eg, WHO reports and health-service-provider registeries) reporting on yellow fever vaccination activities between May 1, 1939, and Oct 29, 2016. To account for uncertainty in how vaccine campaigns were targeted, we calculated three population coverage values to encompass alternative scenarios. We combined these data with demographic information and tracked vaccination coverage through time to estimate the proportion of the population who had ever received a yellow fever vaccine for each second level administrative division across countries at risk of yellow fever virus transmission from 1970 to 2016. FINDINGS: Overall, substantial increases in vaccine coverage have occurred since 1970, but notable gaps still exist in contemporary coverage within yellow fever risk zones. We estimate that between 393·7 million and 472·9 million people still require vaccination in areas at risk of yellow fever virus transmission to achieve the 80% population coverage threshold recommended by WHO; this represents between 43% and 52% of the population within yellow fever risk zones, compared with between 66% and 76% of the population who would have required vaccination in 1970. INTERPRETATION: Our results highlight important gaps in yellow fever vaccination coverage, can contribute to improved quantification of outbreak risk, and help to guide planning of future vaccination efforts and emergency stockpiling. FUNDING: The Rhodes Trust, Bill & Melinda Gates Foundation, the Wellcome Trust, the National Library of Medicine of the National Institutes of Health, the European Union's Horizon 2020 research and innovation programme

    The association between Zika virus infection and microcephaly in Brazil 2015-2017: An observational analysis of over 4 million births.

    Get PDF
    BACKGROUND: In 2015, high rates of microcephaly were reported in Northeast Brazil following the first South American Zika virus (ZIKV) outbreak. Reported microcephaly rates in other Zika-affected areas were significantly lower, suggesting alternate causes or the involvement of arboviral cofactors in exacerbating microcephaly rates. METHODS AND FINDINGS: We merged data from multiple national reporting databases in Brazil to estimate exposure to 9 known or hypothesized causes of microcephaly for every pregnancy nationwide since the beginning of the ZIKV outbreak; this generated between 3.6 and 5.4 million cases (depending on analysis) over the time period 1 January 2015-23 May 2017. The association between ZIKV and microcephaly was statistically tested against models with alternative causes or with effect modifiers. We found no evidence for alternative non-ZIKV causes of the 2015-2017 microcephaly outbreak, nor that concurrent exposure to arbovirus infection or vaccination modified risk. We estimate an absolute risk of microcephaly of 40.8 (95% CI 34.2-49.3) per 10,000 births and a relative risk of 16.8 (95% CI 3.2-369.1) given ZIKV infection in the first or second trimester of pregnancy; however, because ZIKV infection rates were highly variable, most pregnant women in Brazil during the ZIKV outbreak will have been subject to lower risk levels. Statistically significant associations of ZIKV with other birth defects were also detected, but at lower relative risks than that of microcephaly (relative risk < 1.5). Our analysis was limited by missing data prior to the establishment of nationwide ZIKV surveillance, and its findings may be affected by unmeasured confounding causes of microcephaly not available in routinely collected surveillance data. CONCLUSIONS: This study strengthens the evidence that congenital ZIKV infection, particularly in the first 2 trimesters of pregnancy, is associated with microcephaly and less frequently with other birth defects. The finding of no alternative causes for geographic differences in microcephaly rate leads us to hypothesize that the Northeast region was disproportionately affected by this Zika outbreak, with 94% of an estimated 8.5 million total cases occurring in this region, suggesting a need for seroprevalence surveys to determine the underlying reason

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016

    Get PDF
    Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016.Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0–100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0–100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita.Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016.Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0–100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0–100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita
    corecore