60 research outputs found

    Analyzing the Effect of Crowds on Passenger Behavior Inside Urban Trains through Laboratory Experiments—A Pilot Study

    Get PDF
    The objective is to study the distribution of passengers inside urban trains for different levels of crowding. The study is carried out through the observation of videos made by laboratory experiments in which a mock-up of a carriage represented the boarding and alighting process. The Fruin’s Level of Service (LOS) was adopted, but with a different approach, in which the train is divided into five zones (central hall, central aisle, side aisle, central seats and side seats). The experiments are based on the behavior of passengers in the London Underground; however, this study could be expanded to any conventional rail or LRT system. For the laboratory experiments, it is proposed to build a metro carriage and a corresponding platform section, and the scenarios will include different levels of crowding of passengers boarding and alighting to produce a variation in the density on the platform. According to the crowding level, the results allow obtaining the distribution and movements generated by passengers in the five zones for different instants of time during the process of boarding and alighting. It is observed that passengers are distributed according to safety and efficiency conditions. For example, passengers tried to avoid contact with each other unless it is inevitable. In relation to comfort, the seats of the carriage are always used even if there is a low level of crowding. If the crowding level increases, the boarding and alighting time go up. In addition, passengers will spend one or two seconds more if the “let’s get off before getting on the carriage” behavior is breached. This kind of experiment can be used in further research as a way to test “what-if” scenarios using this new method of discretization of the space inside the train, which cannot be tested in existing stations due to restrictions such as the weather, variability of the train frequency, current design of the trains, among others. New experiments are necessary for future research to include other types of passengers such as people with disabilities or reduced mobility

    Impaired oxidative stress response characterizes HUWE1-promoted X-linked intellectual disability.

    Get PDF
    Mutations in the HECT, UBA and WWE domain-containing 1 (HUWE1) E3 ubiquitin ligase cause neurodevelopmental disorder X-linked intellectual disability (XLID). HUWE1 regulates essential processes such as genome integrity maintenance. Alterations in the genome integrity and accumulation of mutations have been tightly associated with the onset of neurodevelopmental disorders. Though HUWE1 mutations are clearly implicated in XLID and HUWE1 regulatory functions well explored, currently much is unknown about the molecular basis of HUWE1-promoted XLID. Here we showed that the HUWE1 expression is altered and mutation frequency increased in three different XLID individual (HUWE1 p.R2981H, p.R4187C and HUWE1 duplication) cell lines. The effect was most prominent in HUWE1 p.R4187C XLID cells and was accompanied with decreased DNA repair capacity and hypersensitivity to oxidative stress. Analysis of HUWE1 substrates revealed XLID-specific down-regulation of oxidative stress response DNA polymerase (Pol) λ caused by hyperactive HUWE1 p.R4187C. The subsequent restoration of Polλ levels counteracted the oxidative hypersensitivity. The observed alterations in the genome integrity maintenance may be particularly relevant in the cortical progenitor zones of human brain, as suggested by HUWE1 immunofluorescence analysis of cerebral organoids. These results provide evidence that impairments of the fundamental cellular processes, like genome integrity maintenance, characterize HUWE1-promoted XLID

    Electrochemical Studies of Passive Film Stability on Fe48Mo14Cr15Y2C15B Amorphous Metal in Seawater at 90oC and 5M CaCl2 at 105oC

    Get PDF
    Several Fe-based amorphous metal formulations have been identified that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22 (UNS N06022), based on measurements of breakdown potential and corrosion rate in seawater. Both chromium (Cr) and molybdenum (Mo) provide corrosion resistance, boron (B) enables glass formation, and rare earths such as yttrium (Y) lower critical cooling rate (CCR). Amorphous Fe{sub 48.0}Cr{sub 15.0}Mo{sub 14.0}B{sub 6.0}C{sub 15.0}Y{sub 2.0} (SAM1651) has a low critical cooling rate (CCR) of less than 80 Kelvin per second, due to the addition of yttrium. The low CCR enables it to be rendered as a completely amorphous material in practical materials processes. While the yttrium enables a low CCR to be achieved, it makes the material relatively difficult to atomize, due to increases in melt viscosity. Consequently, the powders produced thus far have had irregular shape, which had made pneumatic conveyance during thermal spray deposition difficult
    • …
    corecore