44 research outputs found

    Cardiovascular disease among diabetic women with bilateral oophorectomy.

    Get PDF
    Cardiovascular Disease (CVD) is the leading cause of death in women and the risk is increased threefold in diabetics. In postmenopausal diabetics, the ovary responds to hyperinsulinemia by increasing secretion of testosterone precursors which increases the risk of CVD. Data from the National Health and Nutrition Examination Survey (1988-2010) and the Study of Osteoporotic Fractures were used to test the hypothesis that a history of bilateral oophorectomy -surgical removal of both ovaries-would decrease the risk of CVD among postmenopausal diabetic women due to reduced androgen levels. Logistic regression, discrete time logit model, B-Spline regression and Cox proportional hazards models were performed with adjusted estimates and 95% confidence intervals (CIs) calculated. Overall, the studies comprised of 17,549 postmenopausal women with approximately 17.1 % having a history of diabetes Mellitus. Additionally, 24.1% of diabetic women had undergone bilateral oophorectomy with 55% of these having the surgery before age 45 years. Diabetics were more likely to be obese, live a more sedentary lifestyle, have dyslipidemia and were more likely to report a higher prevalence of stroke and myocardial infarction than non diabetics at baseline. Women who had oophorectomy before age 45 years were more likely to be nulliparous and report a family history of myocardial infarction. Diabetic women with oophorectomy had lower levels of total testosterone compared to diabetic women with intact ovaries or naturally menopausal non-diabetic women, which was independent of age and body mass index (p=0.016). In multivariable regression models, bilateral oophorectomy was predictive of prevalent CVD in diabetics (Odds ratio: 1.63 (95% CI: 1.16 - 2.30) with the odds limited to women who had this procedure before age 45 years (OR: 2.11, CI: 1.45-3.08). Although ovarian status did not influence incident CVD in diabetic women (OR: 0.78, CI: 0.56-1.09), women with oophorectomy before the average age at menopause (51 years), with or without diabetes were observed to have elevated CVD risk in spline regression models. Furthermore, the risk of CVD mortality was elevated for diabetic women irrespective of ovarian status, although women with no ovaries had an increased risk (Hazard ratio: 2.57, CI: 1.18-3.67) than those with intact ovaries (HR: 1.99, CI: 1.65-2.39). This present analyses consisting of three different population-based samples of postmenopausal women did not support oophorectomy having a protective effect on cardiovascular health in diabetic women; however, our interpretation of these data is that oophorectomy was performed more often in younger women who inherited a risk factor for heart disease

    Association of Age at Menopause With Incident Heart Failure: A Prospective Cohort Study and Meta‐Analysis

    Get PDF
    BACKGROUND: Early age (<45 years) at menopause has been postulated to be associated with increased cardiovascular disease risk; however, evidence of its relation with heart failure (HF) incidence is limited. We examined whether age at menopause is associated inversely with HF incidence in the Atherosclerosis Risk In Communities (ARIC) study and summarized all existing data in a meta-analysis. METHODS AND RESULTS: In ARIC, data were obtained from 5629 postmenopausal women (mean age 56 years, 26% with bilateral oophorectomy) without HF. During a median follow-up of 21.4 years, 965 incident HF events occurred. In a Cox regression model adjusted for reproductive health and HF risk factors, the hazard ratios for incident HF across categories of age at menopause (<45, 45-49, 50-54, and ≥55 years) were 1.32, 1.17, 1.00 (referent), and 1.12, respectively. Compared with women with later onset of menopause (aged ≥45 years), those with early menopause had elevated HF risk (hazard ratio 1.20, 95% CI 1.01-1.43). For the meta-analysis, we searched Medline and Embase for articles published through December 2015 that prospectively evaluated age at menopause and HF risk. Summarized estimates from the 3 included studies (3568 events) showed higher HF risk among women with early menopause compared with those with later menopause (hazard ratio 1.33, 95% CI 1.15-1.53). CONCLUSIONS: These results provided evidence that early age at menopause is associated with a modestly greater risk of HF. Identification of women with early menopause offers a window of opportunity to implement interventions that will improve overall cardiovascular health during the postmenopausal years

    Relationship between age at menopause, obesity, and incident heart failure: The Atherosclerosis Risk in Communities Study

    Get PDF
    Background The mechanisms linking menopausal age and heart failure (HF) incidence are controversial. We investigated for heterogeneity by obesity on the relationship between menopausal age and HF incidence. Methods and Results Using postmenopausal women who attended the Atherosclerosis Risk in Communities Study Visit 4, we estimated hazard ratios of incident HF associated with menopausal age using Cox proportional hazards models, testing for effect modification by obesity and adjusting for HF risk factors. Women were categorized by menopausal age: \u3c45 years, 45 to 49 years, 50 to 54 years, and ≥55 years. Among 4441 postmenopausal women, aged 63.5±5.5 years, there were 903 incident HF events over a mean follow-up of 16.5 years. The attributable risk of generalized and central obesity for HF incidence was greatest among women who experienced menopause at age ≥55 years: 11.09/1000 person-years and 7.38/1000 person-years, respectively. There were significant interactions of menopausal age with body mass index and waist circumference for HF incidence

    Butler and Post-Analytic Philosophy

    Get PDF
    This article has two aims: (i) to bring Judith Butler and Wilfrid Sellars into conversation; and (ii) to argue that Butler’s poststructuralist critique of feminist identity politics has metaphilosophical potential, given her pragmatic parallel with Sellars’s critique of conceptual analyses of knowledge. With regard to (i), I argue that Butler’s objections to the definitional practice constitutive of certain ways of construing feminism is comparable to Sellars’s critique of the analytical project geared toward providing definitions of knowledge. Specifically, I propose that moving away from a definition of woman to what one may call poststructuralist sites of woman parallels moving away from a definition of knowledge to a pragmatic account of knowledge as a recognizable standing in the normative space of reasons. With regard to (ii), I argue that the important parallels between Butler’s poststructuralist feminism and Sellars’s antirepresentationalist normative pragmatism about knowledge enable one to think of her poststructuralist feminism as mapping out pragmatic cognitive strategies and visions for doing philosophy. This article starts a conversation between two philosophers whom the literature has yet to fully introduce to each other

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation

    A Prospective Population-Based Study of Cardiovascular Disease Mortality following Treatment for Breast Cancer among Men in the United States, 2000&ndash;2019

    No full text
    Male breast cancer is rare but its incidence and mortality are increasing in the United States, with racial/ethnic disparities in survival reported. There is limited evidence for cardiotoxicity of cancer treatment among men with breast cancer. We evaluated the relation between breast cancer treatment and cardiovascular disease (CVD) mortality among men and investigated the salient roles that race/ethnicity play on this relation. Data were from 5216 men with breast cancer aged &ge; 40 years from the Surveillance, Epidemiology, and End Results program who were diagnosed from 2000 to 2019 and underwent surgery. Competing risk models were used to estimate hazards ratios (HR) and 95% confidence intervals (CI). During a median follow-up of 5.6 years, 1914 deaths occurred with 25% attributable to CVD. In multivariable-adjusted models, men who received chemotherapy had elevated risk for CVD (HR: 1.55, 95%CI: 1.18&ndash;2.04). This risk was higher among Hispanic men (HR: 3.96, 95%CI: 1.31&ndash;12.02) than non-Hispanic Black and non-Hispanic White men. There was no significant association between radiotherapy and CVD deaths. In this population-based study, treatment with chemotherapy was associated with elevated risk of CVD mortality in men with breast cancer. Racial/ethnic disparities in the association of chemotherapy and CVD mortality were observed

    The Relation of Serum Vitamin C Concentrations with Alzheimer’s Disease Mortality in a National Cohort of Community-Dwelling Elderly Adults

    No full text
    The relation of vitamin C with Alzheimer’s disease (AD) is equivocal. The aim of this study was to assess the relation of serum vitamin C levels with AD-related mortality, and to evaluate the threshold beyond which the potential benefits of higher serum concentrations of vitamin C for AD mortality ceases. The cohort consisted of 4504 adults aged ≥60 years enrolled in the National Health and Nutrition Examination Survey who had serum measures of vitamin C and no cognitive impairment at baseline (1988–1994) and were followed-up for mortality until 2019. Vitamin C was assayed from fasting blood samples using isocratic high-performance liquid chromatography. At baseline, the mean age of participants was 70 years, with 42.7% being men. At the end of follow-up (median: 15 years), the AD mortality rate was 2.4 per 1000 person-years. In the Cox regression models, compared to participants in the lowest tertile of serum vitamin C (0.98 mg/dL) had a lower risk of AD mortality (hazard ratio: 0.44, 95% confidence intervals: 0.25–0.77) after adjusting for sociodemographic factors, behavior/lifestyle factors, prevalent health conditions, and dietary vitamin C intake. In dose–response analysis using restricted cubic splines, vitamin C concentrations beyond 2.3 mg/dL were associated with the elevated risk of AD-related mortality. The findings from this national sample of community-dwelling elderly adults suggest that higher levels of serum vitamin C are associated with slower AD disease progression, although levels beyond the normal reference values were associated with a higher risk of AD mortality

    The Influence of Education and Apolipoprotein ε4 on Mortality in Community-Dwelling Elderly Men and Women

    No full text
    We investigated the risk of death in relation to the apolipoprotein ε4 allele and evaluated how it interacts with education in 504 elderly adults (mean age 73 years, 65.3% women) who were enrolled in 1993 into the New Mexico Aging Process Study. During 9 years of follow-up, apolipoprotein ε2 appeared to be associated with a lower risk for all-cause mortality (hazard ratio (HR) = 0.73, 95% confidence interval (CI): 0.30–1.71) compared to apolipoprotein ε3 carriers in models adjusted for age, sociodemographic variables, medical conditions, adiposity, and lifestyle factors. The apolipoprotein ε4 allele conferred almost a threefold elevated risk of mortality (HR = 2.76, CI: 1.42–5.37). An interaction between education and apolipoprotein e4 (p=0.027) was observed with the HR of mortality among e4 carriers compared to noncarriers being 1.59 (0.64–3.96) for those with ≥college education; 6.66 (1.90–23.4) for those with some college or trade; and 14.1 (3.03–65.6) for participants with ≤high school education. No significant interaction was identified between apolipoprotein E genotype and cognitive function for mortality risk. These findings suggest that genetic (apolipoprotein ε4) and environmental (education) factors act interactively to influences survival in the elderly with higher education attenuating the adverse effect of apolipoprotein ε4 on mortality
    corecore