25 research outputs found

    Synthesis and characterization of proton conducting oxyanion doped Ba2Sc2O5

    Get PDF
    In this paper we report the successful synthesis of the cubic oxyanion containing perovskites, Ba2Sc2-xPxO5+x (x=0.4, 0.5), with the samples analysed through a combination of X-ray diffraction, NMR, TGA, Raman spectroscopy and conductivity measurements. Conductivity measurements indicate a p-type contribution to the conductivity in oxidizing conditions at elevated temperatures, with evidence for proton conduction in wet atmospheres. For the latter bulk conductivities of 5.9 x 10-3 and 1.3 x 10-3 Scm-1 at 500○C were obtained for x=0.4 and 0.5 respectively, comparable to other perovskite proton conductors, while the stability towards CO2 containing atmospheres was improved compared to BaCeO3 based systems.\ud Related Si doped systems have also been prepared, although in this case small Ba2SiO4 impurities are observed. We also provide evidence to suggest that “undoped” Ba2Sc2O5 contains carbonate groups, which accounts for its thermal instability

    Oxyanion doping strategies to enhance the ionic conductivity in Ba2In2O5

    Get PDF
    In this paper we report the successful incorporation of phosphate and sulphate groups into the ionic conductor, Ba2In2O5, with the samples analysed through a combination of X-ray diffraction, NMR, TGA, Raman spectroscopy and conductivity measurements. The results show that such oxyanion incorporation leads to a conversion from an ordered brownmillerite-type structure to a disordered perovskite-type, and hence increases the conductivity at temperatures < 800○C. In wet atmospheres, there is evidence for a significant enhancement of the conductivity through a protonic contribution.\u

    Structure of cellulose microfibrils in primary cell-walls from collenchyma

    Get PDF
    In the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful model system for the study of primary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facilitating spectroscopic and diffraction experiments. Using a combination of x-ray and neutron scattering methods with vibrational and nuclear magnetic resonance spectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a most probable structure containing 24 chains in cross section, arranged in eight hydrogen-bonded sheets of three chains, with extensive disorder in lateral packing, conformation, and hydrogen bonding. A similar 18-chain structure, and 24-chain structures of different shape, fitted the data less well. Conformational disorder was largely restricted to the surface chains, but disorder in chain packing was not. That is, in position and orientation, the surface chains conformed to the disordered lattice constituting the core of each microfibril. There was evidence that adjacent microfibrils were noncovalently aggregated together over part of their length, suggesting that the need to disrupt these aggregates might be a constraining factor in growth and in the hydrolysis of cellulose for biofuel production

    Hydropyrolysis: implications for radiocarbon pre-treatment and characterization of Black Carbon

    Get PDF
    Charcoal is the result of natural and anthropogenic burning events, when biomass is exposed to elevated temperatures under conditions of restricted oxygen. This process produces a range of materials, collectively known as pyrogenic carbon, the most inert fraction of which is known as Black Carbon (BC). BC degrades extremely slowly, and is resistant to diagenetic alteration involving the addition of exogenous carbon making it a useful target substance for radiocarbon dating particularly of more ancient samples, where contamination issues are critical. We present results of tests using a new method for the quantification and isolation of BC, known as hydropyrolysis (hypy). Results show controlled reductive removal of non-BC organic components in charcoal samples, including lignocellulosic and humic material. The process is reproducible and rapid, making hypy a promising new approach not only for isolation of purified BC for 14C measurement but also in quantification of different labile and resistant sample C fractions

    Characterisation of Ba(OH)(2)-Na2SO4-blast furnace slag cement-like composites for the immobilisation of sulfate bearing nuclear wastes

    Get PDF
    Soluble sulfate ions in nuclear waste can have detrimental effects on cementitious wasteforms and disposal facilities based on Portland cement. As an alternative, Ba(OH)2–Na2SO4–blast furnace slag composites are studied for immobilisation of sulfate-bearing nuclear wastes. Calcium aluminosilicate hydrate (C–A–S–H) with some barium substitution is the main binder phase, with barium also present in the low solubility salts BaSO4 and BaCO3, along with Ba-substituted calcium sulfoaluminate hydrates, and a hydrotalcite-type layered double hydroxide. This reaction product assemblage indicates that Ba(OH)2 and Na2SO4 act as alkaline activators and control the reaction of the slag in addition to forming insoluble BaSO4, and this restricts sulfate availability for further reaction as long as sufficient Ba(OH)2 is added. An increased content of Ba(OH)2 promotes a higher degree of reaction, and the formation of a highly cross-linked C–A–S–H gel. These Ba(OH)2–Na2SO4–blast furnace slag composite binders could be effective in the immobilisation of sulfate-bearing nuclear wastes

    Characterization of and structural insight into struvite-K, MgKPO4·6H2O, an analogue of struvite

    Get PDF
    Struvite-K (MgKPO4·6H2O) is a magnesium potassium phosphate mineral with naturally cementitious properties, which is finding increasing usage as an inorganic cement for niche applications including nuclear waste management and rapid road repair. Struvite-K is also of interest in sustainable phosphate recovery from wastewater and, as such, a detailed knowledge of the crystal chemistry and high-temperature behavior is required to support further laboratory investigations and industrial applications. In this study, the local chemical environments of synthetic struvite-K were investigated using high-field solid-state 25Mg and 39K MAS NMR techniques, alongside 31P MAS NMR and thermal analysis. A single resonance was present in each of the 25Mg and 39K MAS NMR spectra, reported here for the first time alongside the experimental and calculated isotropic chemical shifts, which were comparable to the available data for isostructural struvite (MgNH4PO4·6H2O). An in situ high-temperature XRD analysis of struvite-K revealed the presence of a crystalline–amorphous–crystalline transition that occurred between 30 and 350 °C, following the single dehydration step of struvite-K. Between 50 and 300 °C, struvite-K dehydration yielded a transient disordered (amorphous) phase identified here for the first time, denoted ÎŽ-MgKPO4. At 350 °C, recrystallization was observed, yielding ÎČ-MgKPO4, commensurate with an endothermic DTA event. A subsequent phase transition to Îł-MgKPO4 was observed on further heating, which reversed on cooling, resulting in the α-MgKPO4 structure stabilized at room temperature. This behavior was dissimilar from that of struvite exposed to high temperature, where NH4 liberation occurs at temperatures >50 °C, indicating that struvite-K could potentially withstand high temperatures via a transition to MgKPO4

    A comparison of the molecular weights of polyaniline samples obtained from gel permeation chromatography and solid state 15N n.m.r. spectroscopy.

    No full text
    Polyaniline samples of different molecular weights were prepared using aniline enriched with 15N. Molecular weights were determined by gel permeation chromatography (g.p.c.). 15N n.m.r. spectroscopy confirmed that both samples were in the emeraldine oxidation state, and end group analysis techniques were used to compare molecular weights derived from g.p.c. with those from the n.m.r. data. In addition, the 15N solid state n.m.r. spectra of emeraldine hydrochloride and a solvent-cast, oriented film of emeraldine base are presented

    A comparison of the molecular weights of polyaniline samples obtained from gel permeation chromatography and solid-state nitrogen - 15 nuclear magnetic resonance spectroscopy.

    No full text
    Polyaniline samples of different molecular weights were prepared using aniline enriched with 15N. Molecular weights were determined by gel permeation chromatography. 15N NMR spectroscopy confirmed that both samples were in the emeraldine oxidation state, and end group analysis techniques were used to compare molecular weights derived from G.P.C. with those from the NMR data

    The Role of Catalyst Support, Diluent and Co-Catalyst in Chromium-Mediated Heterogeneous Ethylene Trimerisation

    Get PDF
    Sequential treatment of a previously-calcined solid oxide support (i.e. SiO2, γ-Al2O3, or mixed SiO2–Al2O3) with solutions of Cr{N(SiMe3)2}3 (0.71 wt% Cr) and a Lewis acidic alkyl aluminium-based co-catalyst (15 molar equivalents) affords initiator systems active for the oligomerisation and/or polymerisation of ethylene. The influence of the oxide support, calcination temperature, co-catalyst, and reaction diluent on both the productivity and selectivity of the immobilised chromium initiator systems have been investigated, with the best performing combination (SiO2−600, modified methyl aluminoxane-12 {MMAO-12}, heptane) producing a mixture of hexenes (61 wt%; 79% 1-hexene), and polyethylene (16 wt%) with an activity of 2403 g gCr−1 h−1. The observed product distribution is rationalised by two competing processes: trimerisation via a supported metallacycle-based mechanism and polymerisation through a classical Cossee-Arlman chain-growth pathway. This is supported by the indirect observation of two distinct chromium environments at the surface of the oxide support by a solid-state 29Si NMR spectroscopic study of the Cr{N(SiMe3)2}x/SiO2−600 pro-initiator
    corecore