3,246 research outputs found
Many-body Green's function theory for electron-phonon interactions: ground state properties of the Holstein dimer
We study ground-state properties of a two-site, two-electron Holstein model
describing two molecules coupled indirectly via electron-phonon interaction by
using both exact diagonalization and self-consistent diagrammatic many-body
perturbation theory. The Hartree and self-consistent Born approximations used
in the present work are studied at different levels of self-consistency. The
governing equations are shown to exhibit multiple solutions when the
electron-phonon interaction is sufficiently strong whereas at smaller
interactions only a single solution is found. The additional solutions at
larger electron-phonon couplings correspond to symmetry-broken states with
inhomogeneous electron densities. A comparison to exact results indicates that
this symmetry breaking is strongly correlated with the formation of a bipolaron
state in which the two electrons prefer to reside on the same molecule. The
results further show that the Hartree and partially self-consistent Born
solutions obtained by enforcing symmetry do not compare well with exact
energetics, while the fully self-consistent Born approximation improves the
qualitative and quantitative agreement with exact results in the same symmetric
case. This together with a presented natural occupation number analysis
supports the conclusion that the fully self-consistent approximation describes
partially the bipolaron crossover. These results contribute to better
understanding how these approximations cope with the strong localizing effect
of the electron-phonon interaction.Comment: 9 figures, corrected typo
Fully Ab initio Simulations of Tip Enhanced Raman Scattering Reveal Active Role of Substrate on High-Resolution Images
Tip-enhanced Raman scattering (TERS) has emerged as a powerful tool to obtain subnanometer spatial resolution fingerprints of atomic motion. Theoretical calculations that can simulate the Raman scattering process and provide an unambiguous interpretation of TERS images often rely on crude approximations of the local electric field. In this work, we present a novel and fully ab initio method to compute TERS images by combining Time Dependent Density Functional Theory (TD-DFT) and Density Functional Perturbation Theory (DFPT) to calculate Raman cross sections with realistic local fields. We present TERS results on the benzene and the TCNE molecule, the latter adsorbed at Ag(110). We demonstrate that chemical effects on adsorbed molecules, often ignored in TERS simulations, dramatically change TERS images. This calls for the inclusion of chemical effects for predictive theory-experiment comparisons and understanding of molecular motion at the nanoscale
Compiler verification meets cross-language linking via data abstraction
Many real programs are written in multiple different programming languages, and supporting this pattern creates challenges for formal compiler verification. We describe our Coq verification of a compiler for a high-level language, such that the compiler correctness theorem allows us to derive partial-correctness Hoare-logic theorems for programs built by linking the assembly code output by our compiler and assembly code produced by other means. Our compiler supports such tricky features as storable cross-language function pointers, without giving up the usual benefits of being able to verify different compiler phases (including, in our case, two classic optimizations) independently. The key technical innovation is a mixed operational and axiomatic semantics for the source language, with a built-in notion of abstract data types, such that compiled code interfaces with other languages only through axiomatically specified methods that mutate encapsulated private data, represented in whatever formats are most natural for those languages.National Science Foundation (U.S.) (Grant CCF-1253229)United States. Defense Advanced Research Projects Agency (Agreement FA8750-12-2-0293)United States. Dept. of Energy. Office of Science (Award DE-SC0008923
Networking - A Statistical Physics Perspective
Efficient networking has a substantial economic and societal impact in a
broad range of areas including transportation systems, wired and wireless
communications and a range of Internet applications. As transportation and
communication networks become increasingly more complex, the ever increasing
demand for congestion control, higher traffic capacity, quality of service,
robustness and reduced energy consumption require new tools and methods to meet
these conflicting requirements. The new methodology should serve for gaining
better understanding of the properties of networking systems at the macroscopic
level, as well as for the development of new principled optimization and
management algorithms at the microscopic level. Methods of statistical physics
seem best placed to provide new approaches as they have been developed
specifically to deal with non-linear large scale systems. This paper aims at
presenting an overview of tools and methods that have been developed within the
statistical physics community and that can be readily applied to address the
emerging problems in networking. These include diffusion processes, methods
from disordered systems and polymer physics, probabilistic inference, which
have direct relevance to network routing, file and frequency distribution, the
exploration of network structures and vulnerability, and various other
practical networking applications.Comment: (Review article) 71 pages, 14 figure
Effects of disorder on two coupled Hubbard chains at half-filling
We investigate the effects of quenched disorder on two chain Hubbard models
at half-filling by using bosonization and renormalization group methods. It is
found that the sufficiently strong forward scattering due to impurities and the
random gauge field, which is generated by impurity backward scattering, destroy
the charge gaps as well as the spin gaps. Random backward scattering due to
impurities then drives the resulting massless phase to the Anderson
localization phase. For intermediate strength of random forward scattering,
however, the spin gaps still survive, and only one of the charge gaps is
collapsed. In this parameter region, one of the charge degrees of freedom is in
the Anderson localized state, while the other one is still in the massive
state.Comment: 10 pages, RevTex, 3 eps figure
Recommended from our members
Effects Of Short-term Tai Chi On Circulating Oxylipins And Endocannabinoids In Post-menopausal Women
Spin-Rotation Symmetry Breaking in the Superconducting State of CuxBi2Se3
Spontaneous symmetry breaking is an important concept for understanding
physics ranging from the elementary particles to states of matter. For example,
the superconducting state breaks global gauge symmetry, and unconventional
superconductors can break additional symmetries. In particular, spin rotational
symmetry is expected to be broken in spin-triplet superconductors. However,
experimental evidence for such symmetry breaking has not been conclusively
obtained so far in any candidate compounds. Here, by 77Se nuclear magnetic
resonance measurements, we show that spin rotation symmetry is spontaneously
broken in the hexagonal plane of the electron-doped topological insulator
Cu0.3Bi2Se3 below the superconducting transition temperature Tc=3.4 K. Our
results not only establish spin-triplet superconductivity in this compound, but
may also serve to lay a foundation for the research of topological
superconductivity
Weak-Coupling Approach to Hole-Doped S=1 Haldane Systems
As a weak-coupling analogue of hole-doped Haldane systems, we study two
models for coupled chains via Hund coupling; coupled Hubbard chains, and a
Hubbard chain coupled with an Heisenberg chain. The fixed point
properties of these models are investigated by using bosonization and
renormalization group methods. The effect of randomness on these fixed points
is also studied. It is found that the presence of the disorder parameter
inherent in the Haldane state in the former model suppresses the Anderson
localization for weak randomness, and stabilizes the Tomonaga-Luttinger liquid
state with the spin gap.Comment: 4 pages, RevTex, 1 postscript figure (uuencoded and compressed), to
appear in Phys. Rev.
- …