188 research outputs found
An optimized multiplex flow cytometry protocol for the analysis of intracellular signaling in peripheral blood mononuclear cells
AbstractPhosphoflow cytometry is increasingly being used as a tool for the discovery of biomarkers used in the treatment and monitoring of disease and therapy. The ability to measure numerous phospho-protein targets simultaneously at a single cell level accurately and rapidly provides significant advantages over other methods. We here discuss important considerations required to successfully implement these methods. Three different blood collection tubes (lithium-heparin tubes, CPT with sodium citrate and CPT with sodium heparin) were evaluated, with PBMC isolated through lithium-heparin tubes/lymphoprep displaying reduced basal and increased stimulation induced phosphorylation compared to the other two methods. Further, we provide a protocol outlining an 8 color assay developed for the study of intracellular signaling in peripheral blood mononuclear cells. The assay allows for the quantitative measurement of the phospho-proteins ERK1/2, NF-κB p65, Stat1 (Y701), Stat1 (S727), Stat3 (Y705), Stat3 (S727), Stat4 (Y693), p38 and Stat5 (Y694), as well as the identification of T cells, B cells, natural killer cells and monocytes. The assay additionally incorporates fluorescent cell barcoding, reducing assay costs and increasing throughput while increasing data robustness. Inter-assay precision was assessed over a month long period for all experimental variables (phospho-protein measured, cell type and stimulant). Coefficient of variations (CVs) calculated from process triplicates of normalized median fluorescence intensity (MFI) of the phospho-proteins displayed median CVs under 10% when grouped according to cell type, stimulation agent and phospho-protein measured, while the CV for each triplicate did not exceed 20%
Dendritic cell populations in patients with self-reported food hypersensitivity
Self-reported hypersensitivity to food is a common condition and many of these patients have indications of intestinal immune activation. Dendritic cells (DCs) are recognized as the most potent antigen-presenting cells involved in both initiating immune responses and maintaining tolerance. The aims of this study were to evaluate the DC populations with their phenotype and T cell stimulatory capacity in patients with food hypersensitivity and to study its relationship with atopic disease. Blood samples from 10 patients with self-reported food hypersensitivity, divided into atopic and nonatopic subgroups, and 10 gender- and age-matched healthy controls were analyzed by flow cytometry using the Miltenyi Blood Dendritic cells kit. Monocyte-derived DCs (moDCs) were evaluated concerning their phenotype and T cell stimulatory capacity. DC populations and cell surface markers were not significantly different between patients and healthy controls, but moDCs from atopic patients expressed significantly more CD38 compared to moDCs from nonatopic patients. Moreover, lipopolysaccharide stimulated moDCs from atopic patients produced significantly more interleukin-10 compared to nonatopic patients. CD38 expression was correlated to total serum immunoglobulin E levels. These findings support the notion of immune activation in some patients with self-reported food hypersensitivity. They need to be confirmed in a larger cohort
Dendritic cell populations in patients with self-reported food hypersensitivity
18th United European Gastroenterology Week, October 23-27, 2010publishedVersio
The Culture Dish Surface Influences the Phenotype and Cytokine Production of Human Monocyte-Derived Dendritic Cells
Monocyte-derived dendritic cells (moDC) are an important scientific and clinical source of functional dendritic cells (DC). However, the optimization of the generation process has to date mainly been limited to the variation of soluble factors. In this study, we investigated the impact of the cell culture dish surface on phenotype and cytokine profile. We compared a standard cell culture dish to a non-adherent culture dish for two immunogenic maturation conditions, two tolerogenic conditions, and an unstimulated control. Phenotype, cytokine profile and T cell stimulatory capacity were determined after a 3-day culture. Light microscopy revealed an increase in homotypic cluster formation correlated with the use of non-adherent surfaces, which could be reduced by using blocking antibodies against CD18. All surface markers analyzed showed moderate to strong differences depending on the culture dish surface, including significantly decreased expression of key maturation markers such as CD80, CD86, and CCR7 as well as PD-L1 on cells stimulated with the Jonuleit cytokine cocktail cultured on a non-adherent surface. Significant differences in the secretion of many cytokines were observed, especially for cells stimulated with LPS, with over 10-fold decreased secretion of IL-10, IL12-p40, and TNF-α from the cells cultured on the non-adherent surface. All immunogenic moDC populations showed similar capacity to induce antigen-specific T cells. These results provide evidence that the DC phenotype depends on the surface used during moDC generation. This has important implications for the optimization of DC-based immunotherapy development and underlines that the local surrounding can interfere with the final DC population beyond the soluble factors.publishedVersio
Maturation of monocyte derived dendritic cells with OK432 boosts IL-12p70 secretion and conveys strong T-cell responses
Background: Design of tumour specific immunotherapies using the patients’ own dendritic cells (DC) is a fast advancing scientific field. The functional qualities of the DC generated in vitro are critical, and today’s gold standard for maturation is a cytokine cocktail consisting of IL-1b, IL-6, TNF-a and PGE2 generating cells lacking IL- 12p70 production. OK432 is an immunotherapeutic agent derived from killed Streptococcus pyogenes that has been used clinically to treat malignant and benign neoplasms for decades. Methods: In this study, we analysed the effects of OK432 on DC maturation, DC migration, cytokine and chemokine secretion as well as T-cell stimulatory capacity, and compared it to the cytokine cocktail alone and combinations of OK432 with the cytokine cocktail. Results: OK432 induced a marked up-regulation of CD40 on the cell surface as well as a strong inflammatory response from the DC with significantly more secretion of 19 different cytokines and chemokines compared to the cytokine cocktail. Interestingly, secretion of IL-15 and IL-12p70 was detected at high concentrations after maturation of DC with OK432. However, the OK432 treated DC did not migrate as well as DC treated with cytokine cocktail in a transwell migration assay. During allogeneic T-cell stimulation OK432 treated DC induced proliferation of over 50 percent of CD4 and 30 percent of CD8 T-cells for more than two cell divisions, whereas cytokine cocktail treated DC induced proliferation of 12 and 11 percent of CD4 and CD8 T-cells, respectively. Conclusions: The clinically approved compound OK432 has interesting properties that warrants its use in DC immunotherapy and should be considered as a potential immunomodulating agent in cancer immunotherapy
Use of orbital cycles to improve magnetostratigraphic dating of drill core SG-1 from the Qaidam Basin (NE Tibetan Plateau) spanning nearly the last ~2.8 Ma
Abstract HKT-ISTP 2013
B
Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii
BACKGROUND: Coxiella burnetii, the bacterium causing Q fever, is an obligate intracellular biosafety level 3 agent. Detection and quantification of these bacteria with conventional methods is time consuming and dangerous. During the last years, several PCR based diagnostic assays were developed to detect C. burnetii DNA in cell cultures and clinical samples. We developed and evaluated TaqMan-based real-time PCR assays that targeted the singular icd (isocitrate dehydrogenase) gene and the transposase of the IS1111a element present in multiple copies in the C. burnetii genome. RESULTS: To evaluate the precision of the icd and IS1111 real-time PCR assays, we performed different PCR runs with independent DNA dilutions of the C. burnetii Nine Mile RSA493 strain. The results showed very low variability, indicating efficient reproducibility of both assays. Using probit analysis, we determined that the minimal number of genome equivalents per reaction that could be detected with a 95% probability was 10 for the icd marker and 6.5 for the IS marker. Plasmid standards with cloned icd and IS1111 fragments were used to establish standard curves which were linear over a range from 10 to 10(7 )starting plasmid copy numbers. We were able to quantify cell numbers of a diluted, heat-inactivated Coxiella isolate with a detection limit of 17 C. burnetii particles per reaction. Real-time PCR targeting both markers was performed with DNA of 75 different C. burnetii isolates originating from all over the world. Using this approach, the number of IS1111 elements in the genome of the Nine Mile strain was determined to be 23, close to 20, the number revealed by genome sequencing. In other isolates, the number of IS1111 elements varied widely (between seven and 110) and seemed to be very high in some isolates. CONCLUSION: We validated TaqMan-based real-time PCR assays targeting the icd and IS1111 markers of C. burnetii. The assays were shown to be specific, highly sensitive and efficiently reproducible. Cell numbers in dilutions of a C. burnetii isolate were reliably quantified. PCR quantification suggested a high variability of the number of IS1111 elements in different C. burnetii isolates, which may be useful for further phylogenetic studies
Evaluation of β-catenin inhibition of axitinib and nitazoxanide in human monocyte-derived dendritic cells
Modulation of β-catenin signaling has attractive therapeutic potential in cancer immunotherapy. Several studies have found that β-catenin can mediate immune evasion in cancer and promote anti-inflammatory features of antigen-presenting dendritic cells. Many small molecular compounds that inhibit Wnt/β-catenin signaling are currently in clinical development, but none have entered routine clinical use. New inhibitors of β-catenin signaling are consequently desirable. Here, we have tested, in monocyte-derived dendritic cells, the effects of two small molecular compounds, axitinib and nitazoxanide, that previously have been discovered to inhibit β-catenin signaling in colon cancer cells. Immature and lipopolysaccharide-matured dendritic cells prepared from healthy blood donor buffy coats were stimulated with 6-bromoindirubin-3′-oxime (6-BIO) to boost basal β-catenin activity, and the effects of axitinib and nitazoxanide were compared with the commercial β-catenin inhibitor ICG-001. Assays, including genome-wide RNA-sequencing, indicated that neither axitinib nor nitazoxanide demonstrated considerable β-catenin inhibition. Both compounds were found to be less toxic to monocyte-derived dendritic cells than either 6-BIO or ICG-001. Axitinib stimulated several aspects of dendritic cell function, such as IL12-p70 secretion, and counteracted IL-10 secretion, according to the present study. However, neither axitinib nor nitazoxanide were found to be efficient β-catenin inhibitors in monocyte-derived dendritic cells.publishedVersio
Impaired activation of STAT5 upon IL-2 stimulation in Tregs and elevated sIL-2R in Sjögren’s syndrome
Background
Interleukin-2 (IL-2) and the high-affinity IL-2 receptor (IL-2R) are essential for the survival of regulatory T cells (Tregs) which are the main players in immune tolerance and prevention of autoimmune diseases. Sjögren’s syndrome (SS) is a chronic autoimmune disease predominantly affecting women and is characterised by sicca symptoms including oral and ocular dryness. The aim of this study was to investigate an association between IL-2R and Treg function in patients with SS of different severity defined by the salivary flow rate.
Methods
In a cross-sectional study, we determined plasma soluble IL-2R (sIL-2R) levels in women with SS (n=97) and healthy females (n=50) using ELISA. A subset of those (n=51) was screened for Treg function measured by the STAT5 signalling response to IL-2 using phospho-flow cytometry.
Results
We found that elevated plasma levels of sIL-2R were positively associated with the severity of SS reflected by a pathologically low salivary flow. Phospho-flow analysis revealed that patients with SS have a significantly lower frequency of pSTAT5+ Tregs upon IL-2 stimulation compared with healthy individuals, while the frequency of Tregs and pSTAT5 in conventional T cells remained unchanged. In addition, we observed more pSTAT5+ Tregs at baseline in patients with SS, which is significantly associated with seropositivity and elevated sIL-2R.
Conclusions
Our data indicates that Tregs have a weakened immunosuppressive function in patients with SS due to impaired IL-2/IL-2R signalling capacity. This could mediate lymphocytic infiltration into salivary glands inducing sicca symptoms. We believe that sIL-2R could act as a useful indicator for SS and disease severity.publishedVersio
Multi-year mapping of water demand at crop level:An end-to-end workflow based on high-resolution crop type maps and meteorological data
This article presents a novel system that produces multiyear high-resolution irrigation water demand maps for agricultural areas, enabling a new level of detail for irrigation support for farmers and agricultural stakeholders. The system is based on a scalable distributed deep learning (DL) model trained on dense time series of Sentinel-2 images and a large training set for the first year of observation and fine tuned on new labeled data for the consecutive years. The trained models are used to generate multiyear crop type maps, which are assimilated together with the Sentinel-2 dense time series and the meteorological data into a physically based agrohydrological model to derive the irrigation water demand for different crops. To process the required large volume of multiyear Copernicus Sentinel-2 data, the software architecture of the proposed system has been built on the integration of the Food Security thematic exploitation platform (TEP) and the data-intensive artificial intelligence Hopsworks platform. While the Food Security TEP provides easy access to Sentinel-2 data and the possibility of developing processing algorithms directly in the cloud, the Hopsworks platform has been used to train DL algorithms in a distributed manner. The experimental analysis was carried out in the upper part of the Danube Basin for the years 2018, 2019, and 2020 considering 37 Sentinel-2 tiles acquired in Austria, Moravia, Hungary, Slovakia, and Germany
- …