52 research outputs found

    Numerical evaluation of mean-field homogenisation methods for predicting shale elastic response

    Get PDF
    Homogenisation techniques have been successfully used to estimate the mechanical response of synthetic composite materials, due to their ability to relate the macroscopic mechanical response to the material microstructure. The adoption of these mean-field techniques in geocomposites such as shales is attractive, partly because of the practical difficulties associated with the experimental characterisation of these highly heterogeneous materials. In this paper, numerical modelling has been undertaken to investigate the applicability of homogenisation methods in predicting the macroscopic, elastic response of clayey rocks. The rocks are considered as two-level composites consisting of a porous clay matrix at the first level and a matrix-inclusion morphology at the second level. The simulated microstructures ranged from a simple system of one inclusion/void embedded in a matrix to complex, random microstructures. The effectiveness and limitations of the different homogenisation schemes were demonstrated through a comparative evaluation of the macroscopic elastic response, illustrating the appropriate schemes for upscaling the microstructure of shales. Based on the numerical simulations and existing experimental observations, a randomly distributed pore system for the micro-structure of porous clay matrix has been proposed which can be used for the subsequent development and validation of shale constitutive models. Finally, the homogenisation techniques were used to predict the experimental measurements of elastic response of shale core samples. The developed methodology is proved to be a valuable tool for verifying the accuracy and performance of the homogenisation techniques

    High-pressure methane adsorption and characterization of pores in Posidonia shales and isolated kerogens

    Get PDF
    Sorption capacities and pore characteristics of bulk shales and isolated kerogens have been determined for immature, oil-window, and gas-window mature samples from the Lower Toarcian Posidonia shale formation. Dubinin–Radushkevich (DR) micropore volumes, sorption pore volumes, and surface areas of shales and kerogens were determined from CO2 adsorption isotherms at −78 and 0 °C, and from N2 adsorption isotherms at −196 °C. Mercury injection capillary pressure porosimetry, grain density measurements, and helium pycnometry were used to determine shale and kerogen densities and total pore volumes. Total porosities decrease through the oil-window and then increase into the gas-window. High-pressure methane isotherms up to 14 MPa were determined at 45, 65, and 85 °C on dry shale and at 45 and 65 °C on kerogen. Methane excess uptakes at 65 °C and 11.5 MPa were in the range 0.056–0.110 mmol g–1 (40–78 scf t–1) for dry Posidonia shales and 0.36–0.70 mmol g–1 (253–499 scf t–1) for the corresponding dry kerogens. Absolute methane isotherms were calculated by correcting for the gas at bulk gas phase density in the sorption pore volume. The enthalpies of CH4 adsorption for shales and kerogens at zero surface coverage showed no significant variation with maturity, indicating that the sorption pore volume is the primary control on sorption uptake. The sum of pore volumes measured by (a) CO2 sorption at −78 °C and (b) mercury injection, are similar to the total porosity for shales. Since mercury in our experiments occupies pores with constrictions larger than ca. 6 nm, we infer that porosity measured by CO2 adsorption at −78 °C in the samples used in this study is largely within pores with effective diameters smaller than 6 nm. The linear correlation between maximum CH4 surface excess sorption and CO2 sorption pore volume at −78 °C is very strong for both shales and kerogens, and goes through the origin, suggesting that the vast majority of sorbed CH4 occurs in pores smaller than 6 nm. The DR micropore volume obtained from CO2 adsorption at 0 °C was 40%–62% of the corresponding CO2 sorption pore volume. Sorption mass balances using kerogen and shale isotherms showed that approximately half of the CO2 sorption in these dry shales is in organic matter, with the rest likely to be associated with the inorganic phase (mainly clay minerals). A similar distribution was observed for supercritical CH4 adsorption. Mass balances for adsorption isotherms for kerogen and clay minerals do not always account for the total measured sorbed CH4 on dry shales, suggesting that some sorption may not be completely accounted for by the minerals identified and kerogens in the shales

    Methane adsorption on shale under simulated geological temperature and pressure conditions

    Get PDF
    Shale gas is becoming an increasingly important energy resource. In this study, the adsorption of methane on a dry, organic-rich Alum shale sample was studied at pressures up to 14 MPa and temperatures in the range 300–473 K, which are relevant to gas storage under geological conditions. Maximum methane excess uptake was 0.176–0.042 mmol g–1 (125–30 scf t–1) for the temperature range of 300–473 K. The decrease in maximum methane surface excess with increasing temperature can be described with a linear model. An isosteric enthalpy of adsorption 19.2 ± 0.1 kJ mol–1 was determined at 0.025 mmol g–1 using the van’t Hoff equation. Supercritical adsorption was modeled using the modified Dubinin–Radushkevich and the Langmuir equations. The results are compared with absolute isotherms calculated from surface excess and the pore volumes obtained from subcritical gas adsorption (nitrogen (78 K), carbon dioxide (273 and 195 K), and CH4 (112 K)). The subcritical adsorption and the surface excess results allow an upper limit to be put on the amount of gas that can be retained by adsorption during gas generation from petroleum source rocks

    Evolution of porosity and pore types in organic-rich, calcareous, Lower Toarcian Posidonia Shale

    Get PDF
    Low and high resolution petrographic studies have been combined with mineralogical, TOC, RockEval and porosity data to investigate controls on the evolution of porosity in stratigraphically equivalent immature, oil-window and gas-window samples from the Lower Toarcian Posidonia Shale formation. A series of 26 samples from three boreholes (Wickensen, Harderode and Haddessen) in the Hils syncline was investigated. The main primary components of the shales are microfossiferous calcite (30–50%), clay minerals (20–30%) and Type II organic matter (TOC = 7–15%, HI = 630–720 mg/gC in immature samples). Characteristic sub-centimetric light and dark lamination reflects rapid changes in the relative supply of these components. Total porosities decrease from 10 to 14% at Ro = 0.5% to 3–5% at Ro = 0.9% and then increase to 9–12% at Ro = 1.45%. These maturity-related porosity changes can be explained by (a) the primary composition of the shales, (b) carbonate diagenesis, (c) compaction and (d) the maturation, micro-migration, local trapping and gasification of heterogeneous organic phases. Calcite undergoes dissolution and reprecipitation reactions throughout the maturation sequence. Pores quantifiable in SEM (>ca. 50 nm) account for 14–25% of total porosity. At Ro = 0.5%, SEM-visible macropores1 are associated mainly with biogenic calcite. At this maturity, clays and organic matter are not visibly porous but nevertheless hold most of the shale porosity. Porosity loss into the oil window reflects (a) compaction, (b) carbonate cementation and (c) perhaps the swelling of kerogen by retained oil. In addition, porosity is occluded by a range of bituminous phases, especially in microfossil macropores and microfractures. In the gas window, mineral-hosted porosity is still the primary form of macroporosity, most commonly observed at the organic-inorganic interface. Increasing porosity into the gas window also coincides with the formation of isolated, spongy and complex meso- and macropores within organic particles, related to thermal cracking and gas generation. This intraorganic porosity is highly heterogeneous: point-counted macroporosity of individual organic particles ranges from 0 to 40%, with 65% of organic particles containing no macropores. We suggest that this reflects the physicochemical heterogeneity of the organic phases plus the variable mechanical protection afforded by the mineral matrix to allow macroporosity to be retained. The development of organic macroporosity cannot alone account for the porosity increase observed from oil to gas window; major contributions also come from the increased volume of organic micro- and meso-porosity, and perhaps by kerogen shrinkage

    Stress and pore pressure histories in complex tectonic settings predicted with coupled geomechanical-fluid flow models

    Get PDF
    Most of the methods currently used for pore pressure prediction in sedimentary basins assume one dimensional compaction based on relationships between vertical effective stress and porosity. These methods may be inaccurate in complex tectonic regimes where stress tensors are variable. Modelling approaches for compaction adopted within the geotechnical field account for both the full three dimensional stress tensor and the stress history. In this paper a coupled geomechanical-fluid flow model is used, along with an advanced version of the Cam-Clay constitutive model, to investigate stress,pore pressure and porosity in a Gulf of Mexico style mini-basin bounded by salt subjected to lateral deformation. The modelled structure consists of two depocentres separated by a salt diapir. 20% of horizontal shortening synchronous to basin sedimentation is imposed. An additional model accounting solely for the overpressure generated due to 1D disequilibrium compaction is also defined. The predicted deformation regime in the two depocentres of the mini-basin is one of tectonic lateral compression, in which the horizontal effective stress is higher than the vertical effective stress. In contrast, sediments above the central salt diapir show lateral extension and tectonic vertical compaction due to the rise of the diapir. Compared to the 1D model, the horizontal shortening in the mini-basin increases the predicted present-day overpressure by 50%, from 20 MPa to 30 MPa. The porosities predicted by the mini-basin models are used to perform 1D, porosity-based pore pressure predictions. The 1D method underestimated overpressure by up to 6 MPa at 3400 m depth (26% of the total overpressure) in the well located at the basin depocentre and up to 3 MPa at 1900 m depth (34% of the total overpressure) in the well located above the salt diapir. The results show how 2D/3D methods are required to accurately predict overpressure in regions in which tectonic stresses are important

    #20, Getting Started in Shales.

    No full text
    • 

    corecore